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Abstract. We address the task of automatically generating a medical
report from chest X-rays. Many authors have proposed deep learning
models to solve this task, but they focus mainly on improving NLP met-
rics, such as BLEU and CIDEr, which are not suitable to measure clini-
cal correctness in clinical reports. In this work, we propose CNN-TRG,
a Template-based Report Generation model that detects a set of abnor-
malities and verbalizes them via fixed sentences, which is much simpler
than other state-of-the-art NLG methods and achieves better results in
medical correctness metrics.
We benchmark our model in the IU X-ray and MIMIC-CXR datasets
against naive baselines as well as deep learning-based models, by employ-
ing the Chexpert labeler and MIRQI as clinical correctness evaluations,
and NLP metrics as secondary evaluation. We also provide further evi-
dence indicating that traditional NLP metrics are not suitable for this
task by presenting their lack of robustness in multiple cases. We show
that slightly altering a template-based model can increase NLP met-
rics considerably while maintaining high clinical performance. Our work
contributes by a simple but effective approach for chest X-ray report gen-
eration, as well as by supporting a model evaluation focused primarily
on clinical correctness metrics and secondarily on NLP metrics.
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1 Introduction

Writing a report from medical image studies is an important daily activity for
radiologists, yet it is a time-consuming and error-prone task, even for experi-
enced radiologists. AI could alleviate this workload on physicians by providing
computer-aided diagnosis (CAD) systems that can analyze an imaging study
and generate a written report, which could be used as a starting point by a
radiologist to iterate until producing a final report. For chest X-rays, typically,
the radiologists examine one or more images from a patient, indicate if there are
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Findings: Heart size is mildly enlarged. There are dif-
fusely increased interstitial opacities bilaterally. No fo-
cal consolidation, pneumothorax, or pleural effusion. No
acute bony abnormality.
Impression: Findings concerning for interstitial edema
or infection.

Fig. 1. Imaging study example from the IU X-ray dataset

abnormalities, describe their visual characteristics, and provide a diagnostic or
conclusion. Figure 1 provides an example from the IU X-ray dataset [4].

Many deep learning models are proposed in the literature to generate written
reports from one or more images [1,2,3,9,10,13,14,17,20,27] employing encoder-
decoder architectures or using an image encoder followed by a retrieval or para-
phrasing approach. However, it is hard to tell how ready these approaches are for
regular clinical use since they are traditionally evaluated by Natural Language
Processing (NLP) metrics, such as BLEU [21] or CIDEr-D [28], and these may
not be suitable to measure correctness in the medical domain [2,16,17,22,27]. For
instance, research on the BLEU metric supports its use for evaluating Machine
Translation (MT), but not for other tasks [18,24]. To overcome this problem,
some authors have used metrics to evaluate the clinical correctness of the gener-
ated reports, such as Chexpert labeler [8] and MIRQI [31], although these have
not been tested with expert clinicians nor widely used yet. Moreover, there is
a lack of studies on explainability of these systems. This is a highly relevant
aspect, since the decisions made from the system predictions will have a direct
impact on patients in a clinical setting [25].

In this work, we address the task of report generation from chest X-rays
and we make two main contributions. First, we propose CNN-TRG, a deep
learning model that detects the presence or absence of abnormalities and then
generates the report by relying on a set of pre-defined templates, achieving better
performance than state-of-the-art methods in terms of clinical correctness. We
also design our model to be simpler and more transparent than the typical
encoder-decoder approaches, allowing more control in terms of interpretation.
Second, we provide evidence that some traditional NLP metrics are not suitable
for evaluating this task by showing they are not robust to textual changes in
the reports. Thus, we show that our model can improve its performance in these
metrics without affecting clinical correctness.

2 Background and Related Work

Data: Report Structure and Content. Literature [19] shows that the two
main datasets used in this task are IU X-ray [4] and MIMIC-CXR [12]. Both
contain chest X-rays and their reports written by radiologists, which have two
sections of interest: findings and impression. In findings, the radiologist indicates
the presence or absence of abnormalities and describes visual characteristics of
the positive findings, such as location and severity, among others. In impression,
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Table 1. Example of a ground-truth findings sections and three generated reports, with
BLEU (B), ROUGE-L (R-L) and chexpert metrics calculated. Correct and incorrect
sentences are bold and italics, respectively.

NLP Chexpert
Report B R-L F-1 P R

Ground-truth: Heart size is mildly enlarged. Small right
pneumothorax is seen.

- - - - -

Heart size is normal. No pneumothorax is seen. 0.493 0.715 0 0 0
The cardiac silhouette is enlarged. No pneumothorax. 0.146 0.464 0.5 0.5 0.5
Mild cardiomegaly. Pneumothorax on right lung. 0.075 0.289 1 1 1

the radiologist summarizes the observations into a diagnostic or conclusion. See
the example in the Figure 1.

Authors addressing the task of report generation [19] choose one or both of
these sections to be generated automatically. We argue that the main information
required to write the findings section can be observed directly from an image.
On the contrary, writing the impression may require additional information,
such as analyzing multiple views together (frontal and lateral), checking patient
symptoms, comparing with prior imaging exams or using medical knowledge
that cannot necessarily be inferred from the images alone. Hence, in this article
we start by proposing a method to generate the findings section of the reports.

Metrics and Clinical Correctness. Most works evaluate the report gener-
ation performance using NLP metrics, such as BLEU [21], CIDEr-D, [28] and
ROUGE-L [15], which measure n-gram matching between the ground truth and
a generated text. These metrics are very popular in machine translation and
other NLP tasks; however, they may not be suitable to measure correctness in
clinical reports [2,16,17,22,27] or in other tasks [18,24]. To overcome this, some
authors have used other metrics to measure the medical accuracy of generated
reports. In six previous works [2,3,13,16,17,20], the authors employed the Chex-
pert labeler [8], a rule-based tool that detects a set of 13 abnormalities from
the generated and ground truth reports, and then evaluated these findings using
classification metrics. Similarly, Zhang et al. [31] proposed MIRQI, which labels
20 abnormalities and captures visual characteristics described (location, size,
etc.). Some authors [1,7,9,30] have used other methods for correctness evalua-
tion, but they do not provide an implementation. To the best of our knowledge,
none of these metrics have been validated with expert clinicians, but they aim
at clinical accuracy, unlike NLP metrics.

Consider the examples from Table 1, showing a ground truth example, three
generated reports, and the performance they achieve using some of these metrics.
A generated sample can be clinically incorrect and achieve high NLP scores, or
be correct and achieve low NLP scores. Thus, we emphasize the importance of
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clinical correctness metrics in this work using the Chexpert labeler and MIRQI
as primary metrics above traditional NLP metrics.

Models. The most common approach in the literature derives from the gen-
eral domain image captioning task with encoder-decoder architectures. Most
works use common Convolutional Neural Networks (CNNs) as encoder (e.g.
Densenet [6]), and as decoder: a single LSTM to generate word by word [2]; two
LSTMs arranged hierarchically to generate sentences and words [9,10,16,31]; or
a Transformer-based network [3,17,29]. Some authors [1,13,14,20,27] have em-
ployed retrieval or hybrid retrieval-generation approaches for text generation.
Compared to other methods, our proposed model CNN-TRG is much simpler,
as it uses fewer templates and a more straightforward retrieval process; we test it
more thoroughly in the two main datasets available and primarily using medical
correctness metrics; and is able to achieve much higher clinical performance.

3 Template-Based Report Generation: CNN-TRG

We propose CNN-TRG, a template-based model that detects abnormalities in
the image using a CNN as a classifier and relies on fixed sentences as templates
for the text generation. To detect abnormalities, we implement a CNN that re-
ceives a chest X-ray and performs multi-label classification of the presence of
13 abnormalities (the chexpert set of labels except for “No Finding”). We use
Densenet-121 [6], which has shown good results in report generation [19] as well
as other medical-related tasks [23]. We trained it using a binary cross-entropy
loss for 40 epochs, and applied early stopping by optimizing the PR-AUC clas-
sification metric. We initialized the network with the pre-trained weights from
ImageNet [5], then trained on the Chexpert dataset [8] for the same classification
task, and lastly fine-tuned in the target dataset (IU X-ray or MIMIC-CXR). We
used the PyTorch framework5 in our implementation6.

For text generation, we manually curated a set of two sentences per ab-
normality indicating presence and absence, totaling 26 sentences. We built the
templates by examining the reports and picking existing sentences or creating
new ones. To generate the full report, the image is fed to the CNN to compute
the binary classification, then the corresponding absence or presence template is
chosen for each abnormality, and the sentences are concatenated into the final re-
port. Figure 2 shows the process, and the full details follow in the supplementary
material.

We tested the model using two template sets: single and grouped. Both pro-
vide the same meaning clinically (in terms of the presence of the 13 abnormali-
ties), but are written differently.

Single. Concise sentences that indicate the presence or absence directly,
for example: “No pleural effusion” and “Pleural effusion is seen”. The presence

5 https://pytorch.org/
6 https://pdpino.github.io/clinically-correct

https://pytorch.org/
https://pdpino.github.io/clinically-correct
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Cardiomegaly

Pneumothorax

...

Heart size is normal

The heart is enlarged

No pneumothorax is seen

There is pneumothorax
Concatenate

Heart size is normal.
There is pneumothorax.
The mediastinal contour 
is normal. ...

Final reportCXR

Densenet-121

Choose template

Fig. 2. CNN-TRG model for report-generation

templates do not provide detailed visual characteristics (location, size, etc), since
the classification model does not predict this information.

Grouped. To resemble more the reports from each dataset, we grouped mul-
tiple abnormalities into common sentences from the training set. For example, in
IU X-ray, if all the lung-related abnormalities are classified as absent, the tem-
plate chosen is “The lungs are clear”, instead of using their individual absence
templates. If at least one of the abnormalities does not match the group, the
model falls back to the single set of individual sentences.

4 Experiments

4.1 Datasets

We perform the experiments with two publicly available datasets: IU X-ray7 [4]
and MIMIC-CXR8 [11,12]. Both contain frontal and lateral chest X-rays, IU X-
ray has 7,470 images and 3,955 reports, whilst MIMIC-CXR has 377,110 images
and 227,827 reports. We used the official train-validation-test split for MIMIC-
CXR, and we split the IU X-ray dataset in 80%-10%-10% proportions. We used
the findings section of the reports and kept only frontal X-rays, leaving a total of
3,311 images in IU X-ray and 243,326 in MIMIC-CXR. To train the CNN in the
classification task, we used the chexpert labels provided in MIMIC-CXR, and
computed them for IU X-ray applying the Chexpert labeler [8] to the reports.

4.2 Metrics

We used three NLP metrics: BLEU (denoted as B, calculated as the average of
BLEU 1-4), ROUGE-L (R-L), and CIDEr-D (C-D), implemented in a publicly
available python library9. CIDEr-D ranges from 0 (worst) to 10 (best), while
the others from 0 (worst) to 1 (best). As clinical correctness metrics, we used
Chexpert labeler10 [8] and MIRQI11 [31], which were detailed in section 2. In

7 https://openi.nlm.nih.gov/faq
8 https://physionet.org/content/mimic-cxr-jpg/2.0.0/
9 https://github.com/salaniz/pycocoevalcap

10 https://github.com/stanfordmlgroup/chexpert-labeler
11 https://github.com/xiaosongwang/MIRQI

https://openi.nlm.nih.gov/faq
https://physionet.org/content/mimic-cxr-jpg/2.0.0/
https://github.com/salaniz/pycocoevalcap
https://github.com/stanfordmlgroup/chexpert-labeler
https://github.com/xiaosongwang/MIRQI
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both cases, we provide F1-score (F-1), precision (P), and recall (R). The chexpert
values are the macro average across the 14 labels.

4.3 Baselines

Naive Models. We implement three simple baselines that are not clinically
useful, but provide a reference value for the metrics. Constant : returns the same
report for all the images, manually curated using common sentences from the
dataset describing a healthy subject. Random: returns a random report from the
training set. 1-nn (nearest-neighbor): returns the report from the nearest image
in the training set, using CNN extracted features from the images as feature
space. We used the same CNN as the CNN-TRG model.

Encoder-Decoder Model. We use the CNN from CNN-TRG as encoder
and a LSTM with a visual attention mechanism as decoder. The model is trained
to generate the full report word by word from the input images. We froze the
CNN weights during the report-generation training to avoid over-fitting, and
applied early stopping by optimizing the chexpert F-1 score in the validation
set. For the LSTM, we used a hidden size of 512 and word embeddings of size
100 initialized with the pre-trained RadGlove [32].

Literature Models. We compare our approach with the results from eleven
models [1,2,3,10,13,14,16,17,20,27,31]. We re-implemented the CoAtt model [10],
and for the rest we show the results from their papers.

5 Results

Table 2 shows a benchmark of our model against all baselines in both datasets,
using the test split. We discuss the results next.

Template Sets. As expected, the clinical performance is the same for both
single and grouped sets, since their clinical meaning is unchanged, but the grouped
set achieves higher NLP performance, particularly in the IU X-ray dataset. Thus,
we show that we can improve NLP metrics only by using more common sentences
while preserving the clinical correctness in terms of the seen abnormalities.

CNN-TRG Clinical Correctness. Our template-based models outper-
form all other models in terms of clinical correctness, both in chexpert and
MIRQI F-1 scores. Specifically, our model achieves much better performance
than (1) the naive methods, showing it surpasses a first lower standard; and
(2) the deep learning models, proving our approach to be more effective while
simpler. We also present the results in chexpert F-1 score for each disease in the
supplementary material, showing that our model surpasses all other models in
every abnormality.

NLP vs Clinical Correctness. Naive models achieve higher NLP perfor-
mance than CNN-TRG and comparable to some literature models, even though
they are not clinically useful by design. On the other hand, naive models achieve
very low performance on chexpert and MIRQI, whereas the CNN-LSTM-att,
literature and CNN-TRG models show higher values. This suggests that these
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Table 2. Results in IU X-ray and MIMIC-CXR. Chexpert metrics are macro-averaged
across labels. f+i indicates they generated both findings and impression sections con-
catenated, while the rest generated findings only; ∗ indicates we re-implemented the
code; Ab indicates they used a subset of the data only with reports that have one or
more abnormal findings; super script letters R, T and L indicate Retrieval, Transformer
and LSTM-based approaches.

NLP Chexpert MIRQI
Model B R-L C-D F-1 P R F-1 P R

IU
X

-r
ay

Constant 0.297 0.366 0.307 0.038 0.026 0.071 0.469 0.462 0.481
Random 0.202 0.284 0.145 0.066 0.065 0.068 0.374 0.378 0.384
1-nn 0.220 0.301 0.245 0.145 0.150 0.144 0.497 0.508 0.500
CNN-LSTM-attL 0.202 0.319 0.208 0.140 0.159 0.148 0.484 0.492 0.487
CoAtt∗[10]L 0.231 0.316 0.221 0.144 0.162 0.147 0.491 0.503 0.491

Zhang et al.[31]L,f+i 0.271 0.367 0.304 - - - 0.478 0.490 0.483
CLARA [1]R 0.302 - 0.359 - - - - - -
KERP [14]R 0.299 0.339 0.280 - - - - - -
RTEX [13]R - 0.202 - - 0.193 0.222 - - -

S-M et al.[27]R,f+i 0.515 0.580 - - - - - - -
CNN-TRG single 0.167 0.282 0.030 0.239 0.225 0.357 0.529 0.534 0.540
CNN-TRG grouped 0.273 0.352 0.249 0.239 0.225 0.357 0.529 0.535 0.540

M
IM

IC
-C

X
R

Constant 0.137 0.201 0.059 0.021 0.012 0.071 0.163 0.158 0.176
Random 0.073 0.142 0.078 0.163 0.186 0.151 0.359 0.372 0.362
1-nn 0.119 0.193 0.151 0.320 0.325 0.319 0.635 0.645 0.641
CNN-LSTM-att L 0.103 0.244 0.479 0.308 0.378 0.297 0.644 0.652 0.648
CoAtt∗[10]L 0.120 0.252 0.401 0.201 0.356 0.198 0.544 0.551 0.545
Boag et al. [2]L 0.184 - 0.850 0.186 0.304 - - - -
Liu et al. [16]L 0.192 0.306 1.046 - 0.309 0.134 - - -
Chen et al. [3]T 0.205 0.277 - 0.276 0.333 0.273 - - -
Lovelace et al. [17]T 0.257 0.318 0.316 0.228 0.333 0.217 - - -

CVSE [20]R,Ab - 0.153 - 0.253 0.317 0.224 - - -
RTEX [13]R - 0.205 - - 0.229 0.284 - - -
CNN-TRG single 0.080 0.151 0.026 0.428 0.381 0.531 0.668 0.749 0.640
CNN-TRG grouped 0.094 0.185 0.238 0.428 0.381 0.531 0.666 0.746 0.637

clinical correctness metrics are better to differentiate automated systems than
NLP metrics.

Model Transparency. An advantage of the CNN-TRG model over an end-
to-end deep learning approach is the increased transparency. For example, the
CNN-LSTM-att baseline performs abnormality detection and text generation
inside a black box, while our template-based uses a fully transparent text gen-
eration process. Furthermore, by design, our method allows providing a local
explanation for each disease independently. Consider Figure 3 showing an input
image, the ground truth and generated report, and a Grad-CAM [26] heatmap
indicating feature importance for Cardiomegaly, the only abnormality found.
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CXR Generated by CNN-TRG Ground Truth

The heart is enlarged. The mediastinal contour is
normal. No focal consolidation. The lungs are free
of focal airspace disease. No atelectasis. No pleural
effusion. No fibrosis. No pneumonia. No
pneumothorax is seen. No pulmonary edema. No
pulmonary nodules or mass lesions identified. No
fracture is seen.

The heart is mildly
enlarged. Left
hemidiaphragm is elevated.
There is no acute infiltrate
or pleural effusion. The
mediastinum is
unremarkable.

Fig. 3. Example of a report generated with the CNN-TRG using the single set of
templates, and a Grad-CAM heatmap indicating the activations for the Cardiomegaly
classification. The colors indicate correct sentences. Best viewed in color.

6 Limitations

The main limitation of our work is that we mostly report the results presented
in the original articles. The comparison with other methods could then be im-
proved, since most articles do not provide clinical correctness metrics, and the
evaluation protocols may vary. Only MIMIC-CXR has an official train-test split,
so the IU X-ray dataset could be more affected by this problem. Additionally,
both our templates and the chexpert metric are limited by the set of 13 abnor-
malities, disregarding their visual characteristics and other chest pathologies.
Lastly, our templates are specific to chest X-ray datasets. Hence, in order to
use our method with other image modalities or body parts, we would have to
manually curate a set of templates covering relevant abnormalities.

7 Conclusions and Future Work

We address the task of automatically generating a text report from chest X-
rays and establish a new state-of-the-art in terms of clinical correctness. We
present report examples and naive models which challenge the reliability of some
traditional NLP metrics to measure model performance, suggesting that text
similarity measures might not be suitable in this task. We believe this field
should shift to favor clinical correctness instead of traditional NLP metrics to
evaluate the systems more appropriately.

As future work, we will replicate implementations from some papers to eval-
uate and compare their performance under the same experimental conditions.
Additionally, we will improve the template-based model by detecting more ab-
normalities and their visual characteristics, such as location, severity, and more,
to provide a more detailed description. We will leverage the templates available
at the Radiological Society of North America website12. Lastly, we will further
study the clinical correctness evaluation problem by studying the existing met-
rics, proposing new ones, and validating them with expert radiologists.

12 https://radreport.org/

https://radreport.org/
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8 Supplementary Material

8.1 Template-Based Model

CNN. We used the pytorch implementation13 of the Densenet-121 [6] architec-
ture. Specifically, given an input image, we (1) use the features layer to extract
a feature vector of size 1024×H×W , (2) apply global average pooling to obtain
a vector of size 1024, (3) apply a dropout layer with p = 0.5, (4) pass through a
fully connected layer to obtain a vector of size 13 with predicted values, and (5)
apply a threshold to obtain a binary classification for each abnormality. The spe-
cific threshold value for each label is calculated by finding a value that optimizes
the F1-score obtained in the validation set.

When training, the weights from the convolutional layers were initialized with
ImageNet pre-trained weights from pytorch, and the full model (convolutional
and fully connected layer) were pre-trained in the Chexpert dataset. When pre-
training in Chexpert, we used a batch size of 54, trained with the Adam optimizer
for 15 epochs with learning rate 0.0001 and weight decay (L2-norm) 0.00001.
When training in the target dataset (IU X-ray or MIMIC-CXR), we used a
batch size of 110, trained with the Adam optimizer for 30 epochs with learning
rate 0.00003 and weight decay 0.002. In both cases, we resized the input images
to 256 × 256, and saved the model with the best PR-AUC evaluated in the
validation set. We used a GPU Nvidia RTX 3090 and a GPU Nvidia RTX 2080
for the experiments.

Templates. Tables 3 and 4 show the sentences used in the single and grouped
templates set, respectively. In the grouped set we defined multiple groups of ab-
normalities. For each group, if all its abnormalities match the target (i.e. are
predicted positive or negative), the group template is used. If any of the abnor-
malities does not match the target, the model falls back to using the sentences
from the single set. The order of the sentences in the final report for single and
grouped sets is given by the order of the abnormalities or groups in the tables.

8.2 Datasets Pre-processing

We applied the following steps to pre-process the reports: (1) transform letters
to lowercase, (2) tokenize, and (3) fixed typos. To extract the findings section
of the reports from MIMIC-CXR we used publicly available code released by
the same authors14. We removed a few broken images, made a 80%-10%-10%
train-validation-test split for the IU X-ray dataset, and used the official split for
MIMIC-CXR. Table 5 shows the amounts of images and vocabulary size for each
dataset.

13 https://pytorch.org/vision/stable/models.html
14 https://github.com/MIT-LCP/mimic-cxr

https://pytorch.org/vision/stable/models.html
https://github.com/MIT-LCP/mimic-cxr
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Table 3. Sentences in the single template set

Abnormality Absence template Presence template

Cardiomegaly (Card) Heart size is normal The heart is enlarged
Enlarged Cardiomed.
(EC)

The mediastinal contour is
normal

The cardiomediastinal silhouette
is enlarged

Consolidation (Cons) No focal consolidation There is focal consolidation
Lung Opacity (LO) The lungs are free of focal

airspace disease
One or more airspace opacities
are seen

Atelectasis (A) No atelectasis Appearance suggest atelectasis
Pleural Effusion (PE) No pleural effusion Pleural effusion is seen
Pleural Other (PO) No fibrosis Pleural thickening is present
Pneumonia (Pn) No pneumonia There is evidence of pneumonia
Pneumothorax (Pt) No pneumothorax is seen There is pneumothorax
Edema (E) No pulmonary edema Pulmonary edema is seen
Lung Lesion (LL) No pulmonary nodules or

mass lesions identified
There are pulmonary nodules or
mass identified

Fracture (F) No fracture is seen A fracture is identified
Support Devices (SD) – A device is seen

Table 4. Sentences in the grouped template sets

Abnormalities Target Template

IU
X

-r
ay

Heart related (Card,
EC)

Negative The heart size and mediastinal silhouette
are within normal limits.

Lung related (LL,
LO, E, Cons, Pn, A,
Pt, PE, PO)

Negative The lungs are clear.

Pt, PE, LO Negative There is no pneumothorax or pleural effu-
sion. No focal airspace disease.

M
IM

IC
-C

X
R

All abnormalities Negative No acute cardiopulmonary process.
Card, PE, E, A, SD Positive In comparison with the study of xxxx, the

monitoring and support devices are un-
changed. Continued enlargement of the car-
diac silhouette with pulmonary vascular
congestion and bilateral pleural effusions
with compressive atelectasis at the bases.

Card, PE, E, A, SD SD negative,
rest positive

Continued enlargement of the cardiac sil-
houette with pulmonary vascular conges-
tion and bilateral pleural effusions with
compressive atelectasis at the bases.

8.3 Baseline Models

Constant Models. Table 6 shows the reports used in the Constant models for
each dataset, both describing a healthy subject.

Encoder-Decoder Model. We trained the CNN-LSTM-att model for 200
epochs in IU X-ray and 30 epochs in MIMIC-CXR, using input image size of
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Table 5. Dataset statistics

Dataset Images Train Val Test Broken Vocab size

IU X-ray 3,311 2,638 336 337 4 1,578
MIMIC-CXR 243,326 237,964 1,959 3,403 7 10,161

Table 6. Reports used in the Constant models

Dataset Costant report

IU X-ray The heart is normal in size. The mediastinum is unremarkable. The
lungs are clear. There is no pneumothorax or pleural effusion. No focal
airspace disease. No pleural effusion or pneumothorax.

MIMIC-CXR In comparison with the study of xxxx, there is little change and no
evidence of acute cardiopulmonary disease. The heart is normal in
size. The mediastinum is unremarkable. No pneumonia, vascular con-
gestion, or pleural effusion.

256 × 256, using a batch size of 120 and an Adam optimizer with learning rate
0.001. We applied early stopping by calculating each epoch the chexpert F-1
score in the validation set, and saving the model with the best performance.

CoAtt Implementation. We replicated the implementation of the CoAtt
model [10]. We resized the input images to 450 × 450, trained for 150 epochs
in IU X-ray and 20 epochs in MIMIC-CXR, and used an Adam optimizer with
the same learning rates from the paper: 0.00001 and 0.0005 for the encoder and
decoder, respectively. We used the convolutional layers from the template-based
model as feature extractor, and we set size 512 for the LSTM hidden size and
word embedding size. For IU X-ray we used 586 MTI tags found in the dataset,
and used the 14 chexpert labels as semantic tags in MIMIC-CXR, since the MTI
tags are not provided. We applied early stopping optimizing the chexpert F-1
score, same as with the CNN-LSTM-att model.

8.4 Metrics

The chexpert labeler classifies each label as non-mentioned, negative, uncertain
or positive. We consider the former two as negative, and the latter two as positive
predictions, similar to other works [16].

8.5 Results

Chexpert Results by Label. Table 7 shows results in chexpert F-1 metric by
label. Our template-based model surpasses all other models in every abnormality
(all labels except for “No Finding”, which indicates no abnormalities).

NLP Results. Table 8 shows NLP performance with the mean and standard
deviation calculated across samples in the test set.
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Table 7. Chexpert F-1 results by disease in MIMIC-CXR. CSVE [20] used a subset of
the data only with reports that have one or more abnormal findings.

F1 by disease
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No Finding 0.478 0.382 0.455 0.407 0.541 0.300 0.410
Enlarged Cardiomediastinum 0.061 0.112 0.142 0.134 0.059 0.061 0.245
Cardiomegaly 0.497 0.455 0.445 0.390 0.433 0.555 0.583
Lung Lesion 0.066 0.110 0.062 0.001 0.014 0.148 0.155
Lung Opacity 0.287 0.382 0.417 0.077 0.171 0.345 0.563
Edema 0.555 0.492 0.286 0.271 0.298 0.273 0.617
Consolidation 0.096 0.162 0.085 0.014 0.073 0.151 0.265
Pneumonia 0.237 0.330 0.080 0.030 0.039 0.270 0.433
Atelectasis 0.444 0.428 0.375 0.146 0.322 0.398 0.555
Pneumothorax 0.214 0.199 0.111 0.043 0.098 0.060 0.287
Pleural Effusion 0.670 0.613 0.532 0.473 0.480 0.539 0.733
Pleural Other 0.000 0.109 0.039 0.001 0.009 0.058 0.228
Fracture 0.000 0.065 0.060 0.001 0.000 0.056 0.159
Support Devices 0.707 0.648 0.527 0.613 0.660 0.334 0.766

Macro average 0.308 0.320 0.258 0.186 0.228 0.253 0.428
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Table 8. NLP results indicating mean ± standard deviation across samples in the test
set of both datasets.

Model BLEU ROUGE-L CIDEr-D

IU
X

-r
ay

Constant 0.297 ± 0.103 0.366 ± 0.101 0.307 ± 0.401
Random 0.202 ± 0.095 0.284 ± 0.094 0.145 ± 0.581
1-nn 0.220 ± 0.124 0.301 ± 0.116 0.245 ± 0.889
CNN-LSTM-att 0.202 ± 0.116 0.319 ± 0.114 0.208 ± 0.474
CoAtt [10] 0.231 ± 0.107 0.316 ± 0.104 0.221 ± 0.430
CNN-TRG single 0.167 ± 0.060 0.282 ± 0.069 0.030 ± 0.100
CNN-TRG grouped 0.273 ± 0.112 0.352 ± 0.107 0.249 ± 0.368

M
IM

IC
-C

X
R

Constant 0.137 ± 0.072 0.201 ± 0.075 0.059 ± 0.212
Random 0.073 ± 0.082 0.142 ± 0.107 0.078 ± 0.639
1-nn 0.119 ± 0.102 0.193 ± 0.130 0.151 ± 0.802
CNN-LSTM-att 0.103 ± 0.187 0.244 ± 0.201 0.479 ± 1.745
CoAtt [10] 0.120 ± 0.166 0.252 ± 0.178 0.401 ± 1.536
CNN-TRG single 0.080 ± 0.046 0.151 ± 0.056 0.026 ± 0.071
CNN-TRG grouped 0.094 ± 0.136 0.185 ± 0.148 0.238 ± 1.291
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