Immersive Recommendation

News and Event Recommendations Using Personal Digital

Traces

Romano Fenzo

Contexto

Crecimiento de la web, redes sociales, e-commerce, y comunicaciones con dispositivos móviles generan continuamente *digital traces*

Problemas

Poco o nulo análisis sobre estos datos para mejorar la experiencia del usuario

Datos con ruido relacionado al contexto

Ej. Post de Twitter contienen muchos términos sociales como *love, share, retweet,* etc.

Múltiples fuentes de datos.

Términos

Se busca generar recomendaciones de noticias y eventos cercanos utilizando digital traces.

Contexto: Una fuente de datos que forma parte de las digital traces.

Ej. Contexto1: Facebook, Contexto2: Twitter, Contexto3: email.

Items: Objetos a recomendar, en este caso noticias y eventos cercanos.

Ej. Evento X de Meetup.com, Noticia X de Medium.com

Propuesta

Fase 1. Perfilar al usuario según tópicos

Channel-Aware Latent Dirichlet Allocation (CA-LDA)

Fase 2: Recomendación de items

Hybrid recommendation algorithm (Perfiles + Ratings)

Opción común: LDA simple

Procedimiento:

- Entrenar LDA en base a un solo contexto
- 2. Inferir los tópicos de un usuario para cada contexto por separado
- 3. Perfilar el usuario como la suma ponderada de la inferencia anterior

Opción común: LDA simple

Problemas:

- 1. Cobertura Insuficiente: Si el texto de los *items* es pequeño, el perfilamiento será poco acertado
- 2. Ruido de contexto

Propuesta: Channel-Aware LDA (CA-LDA)

Entrena LDA sobre la totalidad de contextos.

Lo anterior asume que:

- Hay tópicos destacados que son compartidos por los contextos
- 2. Hay tópicos específicos por contexto (asociado al ruido)

Propuesta: Channel-Aware LDA (CA-LDA)

Entrena LDA sobre la totalidad de contextos.

Lo anterior asume que:

- Hay tópicos destacados que son compartidos por los contextos
- 2. Hay tópicos específicos por contexto (asociado al ruido)

Propuesta: Channel-Aware LDA (CA-LDA)

Modificaciones a LDA:

Para cada contexto, genera una distribución aleatoria de palabras en los tópicos específicos.

Genera una única distribución aleatoria de palabras en los tópicos comunes.

Propuesta: Channel-Aware LDA (CA-LDA)

Modificaciones a LDA:

Mediante una binomial decide, dentro del algoritmo de LDA, si la palabra a procesar es común o específica.

Genera las palabras de acuerdo al resultado anterior

Propuesta: Channel-Aware LDA (CA-LDA)

Resultados:

Términos que prevalecen en determinado contexto son asignados a los tópicos específicos

Previene que los tópicos específicos se mezclen con los comunes.

Contextos con vocabulario pobre, son enriquecidos (entrenamiento en conjunto)

Resultados:

Términos específicos

Context	Background Terms		
Email	pleas, offic, schedul, convers, fax, cellular		
Twitter	awesom, share, tweet, post, video, love		
Facebook	love, night, happi, tomorrow, final, tonight		
Medium.com	happen, idea, actual, experi, hard, reason		
Meetup.com	social, event, network, singl, profession, join		

Nota: Adicionalmente se generan perfiles a cada item

Fase 2. Recomendación de items

Propuesta: Hybrid recommendation algorithm

Utiliza perfiles creados en Fase 1 y ratings sobre los items

$$r_{ij} \sim \mathcal{N}((\mathbf{u}_i + \eta_i)^T (\mathbf{v}_j + \varepsilon_j), c_{ij}^{-1})$$
$$\eta_i \sim \mathcal{N}(0, \lambda_u^{-1} I_K)$$
$$\varepsilon_j \sim \mathcal{N}(0, \lambda_v^{-1} I_K)$$

r_{ij}: rating de usuario i al *item* j
 u_i, v_j: perfil de usuario i e *item* j respectivamente
 η_i, ε_i: compensan la información que no fué capturada en el perfilamiento y es otorgada por el *rating* c_{ii}: confianza sobre r_{ii}, ej. *Medium upvote* vs 1-5 *ratings*

Nota: η, y ε, son calculados mediante clustering (EM - Expectation Maximization)

Dataset

Medium.com: 63,053 users, 31,000 noticias

En promedio, cada usuario ha calificado positivo 13.1 noticias

10% de las noticias tienen el 59% de las calificaciones positivas

Meetup.com: 50,000 users, 11,823 grupos de juntas

En promedio, cada usuario pertenece a 5.1 grupos

10% de los grupos tienen el 61% de los usuarios

Dataset

Para cada usuario:

Sus 3000 tweets más recientes

Tweets de personas que ellos siguien

Tweets que ocupan hashtags que el usuario también usa

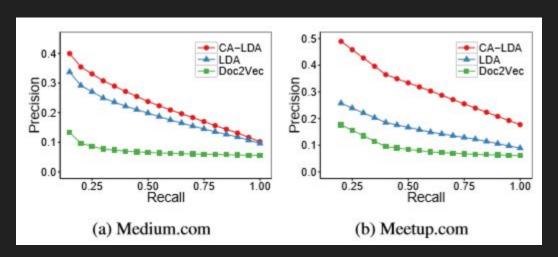
Evaluación

Grupo de test:

3000 usuarios aleatorios de Medium.com y Meetup.com

Para cada usuario se eligieron 10 noticias que calificó positivo, y 190 que no calificó, 5 grupos a los que se unió y 95 a los que no se unió.

Evaluación



Comportamiento de mean Average Precision (mAP) cuando se consideran distintas fuentes de tweets.

mAP	Own	Followees	Hashtags	Combined
Medium	0.237	0.240	0.188	0.245
Meetup	0.331	0.347	0.282	0.353

Evaluación

Comparativa de Immersive Recommendation con Most Popular First, Probabilistic Matrix Factorization, Collaborative Topic Modeling

Recall Promedio: (Items positivos correctos en top-M) / (Total items positivos)

MRR: Mide el ranking del primer item correcto y lo promedia sobre todos los usuarios.

