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Motivation
Motivation

= Geolocation services on portable devices
= | ocation-based social networks (LBSN)

= Yelp
= Foursquare

= Vast amount of check-in data

= Comments on places
= Recommendations on places
= Ratings on places

= Use data to assist users

Christoph Trattner, Alex Oberegger, Lukas Eberhard, Denis Parra, Leandro Marinho, Know-Center
September 15, 2016



. . KNO
Motivation

= Context aware recommender systems (CARS)
concentrated on

= Social context
= Geographical context
= Time context

= No research on the impact of weather

= Pool not popular at rainy conditions
= |ce cream shop not popular at cold temperatures
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- Problem Statement

Given a user u, the user’s check-in history LY, i.e., the
POls that the user has visited in the past, and the current
weather context ¢ the aim is to predict the POls

LY = {h,... Iy} that the user will likely visit in the future
that are not in LY.
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Motivation
ﬂ Research Questions

= RQ1 Are the users’ mobility patterns influenced by
weather?

= RQ2 How can weather context information be
incorporated into existent recommender systems?

= RQ3 To what extent can weather information be used
to increase recommender accuracy?

= RQ4 Which weather feature provides the highest
impact on the recommender accuracy?

Christoph Trattner, Alex Oberegger, Lukas Eberhard, Denis Parra, Leandro Marinho, Know-Center
September 15, 2016



Dataset Eﬂgyg,

Dataset

= Foursquare Check-in Dataset from Dingqi Yang [3][4]

= Worldwide check-ins from April 2012 to September
2013

= Filtered by U.S. cities

= ~3,000,000 Check-ins
= ~500,000 Venues

= ~50,000 Users

= 60 Cities
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Dataset

ﬂ Dataset

= Weather Data from forecast.io weather API [1]

= One API call per <venue, city, time> triple

= ~27,000 API calls
= Eight weather attributes

= Visibility, Precipitation intensity, Humidity, Cloud cover,
Pressure, Windspeed, Temperature, Moonphase

= Qutdated category information needed recrawling
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Dataset
ﬂ Check-in Distributions
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Empirical Analysis

Weather Distributions

Temperature Moonphase
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Empirical Analysis
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Correlation between weather features
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Empirical Analysis
Impact on Travel Distance

Cloud Cover Pressure

Probability (log)
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Empirical Analysis

Impact on Category Popularity
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Empirical Analysis
User Mobility Patterns

Mobility pattern of a Mobility pattern of a
“frosty” user “heated” user
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Empirical Analysis

Seasonal Impact on Categories
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Empirical Analysis

Regional Weather Variability

Total variability normed over all weather features
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Weather Aware POI Recommender (WPOI) Lo

Weather Aware POl Recommender (WPOI)

= Many basic recommender algorithms available

= Most Popular (MP)
= KNN-Algorithms (User, Item)
= Matrix Factorization (MF)

= Enrich existing recommender system with weather
context

= Test recommender accuracy in four cities
representing variety of climate (cardinal directions)

= Minneapolis
= Boston

= Miami

= Honolulu

Christoph Trattner, Alex Oberegger, Lukas Eberhard, Denis Parra, Leandro Marinho, Know-Center
September 15, 2016



Weather Aware POl Recommender (WPOI)

= Rank-GeoFM by Li et al. (2015) [2]

» Based on MF

» Context aware (Geo and Time)
= Easy to extend

= High accuracy

= Based on iterative learning of latent model
parameters (weights)

= | earns model parameters with stochastic gradient
descent (SGD)
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Weather Aware POl Recommender (WPOI)
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= wll is the probability that | is visited given that /x has
been visited in terms of geographical position and mtt
is the probability that the popularity of a POl in time
slot t is influenced by those in time slot tx.
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Weather Aware POl Recommender (WPOI)

= Replace time with weather feature
= Start algorithm for each weather feature separately

= Measure accuracy and compare with RankGeoFM
and base algorithms
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Weather Aware POl Recommender (WPOI)
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Weather Aware POl Recommender (WPOI)
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center

Algorithm 1: WPOI

Input: check-in data D, hyperparameters that steer context influence and learning rate
Init: Initialize © with A/(0, 0.01); Shuffle D
repeat
for (u,/,c) € Ddo
Compute y,c andn =0
repeat
|  Sample a POI /" and feature class ¢’, Compute y,, ., and set n++
until (u,I',c’) ranked inccorrectly || everything ranked correct
if (u,I',c’) ranked inccorrectly then
update latent model parameters ©
according to the gradient of the error function.
end

end
until convergence
return © = {L() 1@ [(O) y) y@ Fy
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Weather Aware POl Recommender (WPOI)

([ ]4
Center

Boston

Boston, WPOI (Temperature)
—e— NDCG@20

0.05
0.04

0.03

Measure

0.02

0.01

o

1000 2000 3000 4000
Iteration

Minneapolis

Minneapolis, WPOI (Temperature)
—e— NDCG@20

0.05
0.04

0.03

Measure

0.02

0.01

o

1000 2000 3000 4000
Iteration

Measure

Measure

Miami

Miami, WPOI (Temperature)
—e— NDCG@20

0.04

0.03

0.02

0.01

0.00

o

1000 2000 3000 4000 5000
Iteration

Honolulu

Honolulu, WPOI (Temperature)
—e— NDCG@20

0.05
0.04
0.03
0.02

0.01

o

1000 2000 3000 4000 5000
Iteration

Christoph Trattner, Alex Oberegger, Lukas Eberhard, Denis Parra, Leandro Marinho, Know-Center

September 15, 2016



Weather Aware POl Recommender (WPOI)
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Conclusions & Future Work

Conclusions

Empirical Analysis

= Weather features have little impact on travel distance
= Seasonality has an impact on category popularity

= Category popularity is dependent on the region

= Higher weather variability in the north
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Conclusions & Future Work
WPOI

= Weather context more useful than time

= WPOI better in regions closer to tropical zone

= Precipitation intensity and visibility improve accuracy
best

= \WWeather context is indeed a useful contextual
information in POl recommender systems
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Conclusions & Future Work
Future Work

= Only one weather feature at a time

= Incorporate travel distance probabilities under
different weather conditions

= Incorporate user sensitivity to weather conditions
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Questions?
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Weather feature Properties Range in dataset

Precipitation intensity  Precipitation inten-  0mm/h — 34,29mm/h
sity measured in
milimeters of liquid

water/hour.

Temperature Temperature mea- —24,48° — 46,58°
sured in  degree
Celsius

Wind speed Wind speed 0m/s—19,13m/s
measured in  me-
ters/second

Cloud cover Value between 0 and 0—1

1 displaying the per-
centage of the sky
covered by clouds.
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Conclusions & Future Work

l KNOW
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Humidity

Pressure

Visibility

Moonphase

Value between 0 and 1
representing the “Per-
centage relative humidity”
is defined as the partial
pressure of water vapor in
air divided by the vapor
pressure of water at the
given temperature.”

Atmospheric pressure
measured in hectopas-
cals.

Value representing the av-
erage visibility in kilome-
ters capped at 16,09

Value from 0 to 1 rep-
resenting the range be-
tween new moon and full
moon

0,02¢ — 1,009

957,11hPa — 1046, 05hPa

0km — 16,09km
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Conclusions & Future Work
Correlations

Humidity Temperature -0.99 | Relative humidity repre-
sents the saturation of
moisture in the air and
cold air does not need that
much moisture to be satu-
rated.

Windspeed Temperature 0.93 | Foehn-effect,  Windchill
factor not included

Humidity Windspeed -0.93 | See positive correlation
between windspeed and
temperature and nega-
tive between humidity and
temperature.
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Conclusions & Future Work
Correlations

Temperature  Visibility 0.77 | At colder temperatures
saturation is reached ear-
lier and therefore fog oc-
curs more often that blurs

visibility.

Humidity Visibility -0.77 | High humidity blurs visibil-
ity

Cloud cover  Visibility -0.67 | Clouds cover the sun —

visibility is low
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Moonphase
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Algorithm 2: WPOI

Input: check-in data D, geographical influence matrix W, weather influence matrix W/, hyperparameters
e, C, o, 8 and learning rate vy and v
Output: parameters of the model © = {L(), L® (&) y) y@ Fy
init: Initialize © with A7(0, 0.01); Shuffle D
repeat
for (u,/,c) € Ddo
Compute y,c andn=0
repeat
|  Sample a POI /" and feature class ¢’, Compute y,,/., and set n++
until [(xye > X, o ) (Yue < Yypor +€) =10rn> |L|
if [(Xue > X0 ) (Yuie < Yypror +€) = 1then
=E(|Y])s
n [ J) ull’

a
. 1 . 1
9= (Zc*ef—'c/ Wiet o fc(*) - Zfrch’ Wi+ f£+))
0 £ — (P = 1®)
19— ) — yung

o l/(/z) = ywnle
I/(Z) — //(2) + ywnfe

end

end

Project updated factors to accomplish constraints
until convergence

returno = {L() @ () yO) @) Fl)y

Christoph Trattner, Alex Oberegger, Lukas Eberhard, Denis Parra, Leandro Marinho, Know-Center
September 15, 2016



i Know
Conclusions & Future Work

Symbol Description

u set of users uy, Uz, ..., Uy

L set of POls /1,/2,...,/‘”

FCs set of classes for feature f

F set of weather feature classes fi, 2, ..., firg,|

(S] latent model parameters containing the learned weights
(LD 1@ 1@ y® y@ FMO} for locations, users and weather
features

Xui |U|x|L| matrix containing the check-ins of users at POls

Xutc |U|x|L|x|FC¢| matrix containing the check-ins of users at POls at
a specific feature class ¢

Dy user-POI pairs: (u,)|xy >0

D user-POl-feature class triples: (u, /, ¢)|Xuc > 0

d(l,I'"y  geo distance between the latitude and longitude of / and /'

Christoph Trattner, Alex Oberegger, Lukas Eberhard, Denis Parra, Leandro Marinho, Know-Center
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38
. w geographical probability matrix of size |L|x|L| where wj
contains the probability of /" being visited after / has been
visited according to their geographical distance. wy =
(0.5+d(1,1')~1)

wi probability that a weather feature class c is influenced by
Zueu ZIGL Xule X !

2 2
Vi Zie Xaio\/ 2ueu et Xy

feature class ¢’. Wiy =

Ni(1) set of k nearest neighbors of POl /

Yul the recommendation score of user u and POI /

Yule the recommendation score of user u, POl | and weather
feature class ¢

I(-) indicator function returning /(a) = 1 when a is true and 0
otherwise

€ margin to soften ranking incompatibility

Incomp(yuc,€)  a function that counts the number of locations /' € £ that
should be ranked lower than | at the current weather context
¢ and user u but are ranked higher by the model.
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Yg learning rate for updates on latent parameters from base ap-
proach.

E() a function that turns the rating incompatibility Incomp(yuc, €)
into aloss. E(r) =1, 1

@ objective function to minimize during the iterative learning.
0= Z(u,/,c)eoz E(Incomp(yu, €))

s(a) sigmoid function s(a) = g5

Oucll’ function to approximate the indicator function with a continu-
ous sigmoid function. duerr = S(Yurc + € — Yure)(1 — S(Yurc +
€ — Yu))

L%j if the n™ location I’ was ranked incorrect by the model the ex-
pactation is that overall L‘—,L,'j locations are ranked incorrect.

g—g calculation of stochastic gradient =

15} 7 +€—Yuel
E (L‘TL]lD Suo 2t sYee)

0+ 00— % SGD based optimization of the latent model parameters
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Dataset Statistics

City #Users #Venues #Check-ins Sparsity
Minneapolis 436 797 37,737 89.1%
Boston 637 1141 42,956 94.3%
Miami 410 796 29,222 91.0%
Honolulu 173 410 16,042 77.4%
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Formulas

%
n
I
SI8
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