Instructor: Denis Parra, Profesor Asistente PUC Chile, Ph.D. University of Pittsburgh
Ayudante: Vicente Dominguez, Alumno de Magister en Ciencia de la Computación PUC CHile.
Institución: Pontificia Universidad Católica de Chile
Lugar: Sala A4, Campus San Joaquín, PUC Chile.
Horario: Martes y Jueves, Módulo 3 (11:30 a 12:50).
Programa IIC 3633, 2do Semestre 2017: pdf.
El curso de Sistemas Recomendadores cubre las principales tareas de recomendación, algoritmos, fuentes de datos y evaluación de estos sistemas. Al final de este curso serás capaz de decidir qué técnicas y fuentes de datos usar para implementar y evaluar sistemas recomendadores.
Video: Introducción a RecSys
En este video pueden revisar mi charla de introducción a los sistemas recomendadores presentada como Keynote en las Jornadas Chilenas de Ciencias de la Computación 2014 ( link a youtube )
Contenido
MES 1 En las primeras semanas nos enfocaremos en métodos básicos para hacer recomendación usando y prediciendo ratings (filtrado colaborativo User-based & item-based, slope-one). En la 3ra semana veremos formas adicionales de evaluar más alla de la métricas de error de predicción de rating (MAE, MSE, RMSE) e incorporaremos métricas para evaluar listas de ítems (precision, recall, MAP, P@n, nDCG). En la ultima semana veremos métodos basados en contenido y sistemas híbridos.
MES 2 Factorizacion Matricial usando ratings. Recapitulación de las tareas de recomendacion (predecir rating, predecir una lista de items, recomendar una secuencia, recomendación TopN) y de su evaluacion considerando diversidad, novedad, coverage, y otras métricas.
MES 3 Fuentes adicionales de informacion. Comenzamos con el problema de usar implicit feedback. Recomendación que considera contexto (tiempo, ubicación) y fuentes diversas de recomendación (social data, cross-domain data)
MES 4 Recomendaciones a grupos, Evaluación centrada en el usuario, proyecto final.
Código de Honor
Este curso adscribe el Código de Honor establecido por la Escuela de Ingeniería el que es vinculante. Todo trabajo evaluado en este curso debe ser propio. En caso de que exista colaboración permitida con otros estudiantes, el trabajo deberá referenciar y atribuir correctamente dicha contribución a quien corresponda. Como estudiante es su deber conocer la versión en línea del Código de Honor
Evaluaciones
Detalles de las evaluaciones en esta presentacion.
Tarea 1 Al final de las primeras 4 semanas, las(los) estudiantes implementarán mecanismos de recomendación para predecir ratings y para rankear items en un dataset que se entregará durante clases. Usarán la biblioteca pyreclab
Lecturas: Blog y Presentación Cada Alumno tendrá un blog donde escribirá sus comentarios respecto de los papers indicados como obligatorios. No es necesario hacer un resumen del paper, sino indicar puntos que pueden abrir discusión, mejoras o controversias: Evaluación inadecuada, parámetros importantes no considerados, potenciales mejoras de los algoritmos, fuentes de datos que podían mejorar los resultados, etc.
Adicionalmente, cada alumno presentará al menos una vez durante el semestre un paper sobre un tópico, con el objetivo de abrir una discusión sobre el tema durante la clase.
Proyecto Final Durante Septiembre, las(los) estudiantes presentarán una idea de proyecto final, la cual desarrollarán durante Octubre y Noviembre, para hacer una presentación de su proyecto al final del curso (fines de Noviembre.)
Agenda Semestral

Semana 1: Introducción
Clases Semana 1
- Introducción
- Ranking no personalizado + Filtrado Colaborativo (User-Based) slides pdf
- Filtrado Colaborativo (User-Based) con Clustering slides pdf
Lecturas Semana 1
Obligatorias
- How not to sort by Average Rating, Evan Miller Blog
- Schafer, J. B., Frankowski, D., Herlocker, J., & Sen, S. (2007). Collaborative filtering recommender systems. In The adaptive web (pp. 291-324). Springer Berlin Heidelberg.
Sugeridas
- Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994, October). GroupLens: an open architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM conference on Computer supported cooperative work (pp. 175-186). ACM.
- Shardanand, Upendra, and Pattie Maes. “Social information filtering: algorithms for automating “word of mouth”.” Proceedings of the SIGCHI conference on Human factors in computing systems. ACM Press/Addison-Wesley Publishing Co., 1995.
- Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12), 61-70.
- How hacker news ranking algorithm works, link
- How reedit ranking algorithm works, link
- Reddit comment ranking algorithm, link
Semana 2: Filtrado Colaborativo IB + Slope One
Lecturas Semana 2
Obligatorias
- Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001, April). Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th international conference on World Wide Web (pp. 285-295). ACM.
- Lemire, D., & Maclachlan, A. (2005, April). Slope One Predictors for Online Rating-Based Collaborative Filtering. In SDM (Vol. 5, pp. 1-5).
Sugeridas - Herlocker, J. L., Konstan, J. A., Borchers, A., & Riedl, J. (1999, August). An algorithmic framework for performing collaborative filtering. In Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval (pp. 230-237). - Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: Item-to-item collaborative filtering. Internet Computing, IEEE, 7(1), 76-80. - Schafer, J. B., Frankowski, D., Herlocker, J., & Sen, S. (2007). Collaborative filtering recommender systems. In The adaptive web (pp. 291-324). Springer Berlin Heidelberg. - Wang, J., De Vries, A. P., & Reinders, M. J. (2006, August). Unifying user-based and item-based collaborative filtering approaches by similarity fusion. In Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 501-508). ACM.
Semana 3: Factorización Matricial
Clases Semana 3 (Solo Jueves)
Lecturas Semana 3
Obligatorias
- Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer IEEE Magazine, 42(8), 30-37.
Sugeridas
- Takács, G., Pilászy, I., Németh, B., & Tikk, D. (2009). Scalable collaborative filtering approaches for large recommender systems. Journal of machine learning research, 10(Mar), 623-656.
- Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000). Application of dimensionality reduction in recommender system-a case study (No. TR-00-043). Minnesota Univ Minneapolis Dept of Computer Science.
- Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2002). Incremental singular value decomposition algorithms for highly scalable recommender systems. In Fifth International Conference on Computer and Information Science (pp. 27-28)
Semana 4: Evaluación y Retroalimentación Implícita
Clases Semana 4
- Métricas de Information Retrieval slides pdf
- Tests de Significancia Estadística slides pdf
- Retroalimentación Implícita (Implicit Feedback) slides pdf
Lecturas Semana 4
Obligatorias
- Shani, Guy, and Asela Gunawardana. “Evaluating recommendation systems.” In Recommender systems handbook, pp. 257-297. Springer US, 2011.
- Hu, Y., Koren, Y., & Volinsky, C. (2008, December). Collaborative filtering for implicit feedback datasets. In Data Mining, 2008. ICDM’08. Eighth IEEE International Conference on (pp. 263-272). IEEE.
Sugeridas Evaluacion - Parra, D., & Sahebi, S. (2013). Recommender systems: Sources of knowledge and evaluation metrics. In Advanced Techniques in Web Intelligence-2 (pp. 149-175). Springer Berlin Heidelberg. pre-print pdf - Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems (TOIS), 22(1), 5-53. - Shani, Guy, and Asela Gunawardana. “Evaluating recommendation systems.” In Recommender systems handbook, pp. 257-297. Springer US, 2011. - The 10 recommender system metrics you should know about, GraphLab Blog - Alan Said and Alejandro Bellogín. 2014. Comparative recommender system evaluation: benchmarking recommendation frameworks. In Proceedings of the 8th ACM Conference on Recommender systems (RecSys ’14).
Sugeridas Retroalimentación Implícita - Oard, D. W., & Kim, J. (1998, July). Implicit feedback for recommender systems. In Proceedings of the AAAI workshop on recommender systems (pp. 81-83). - Baltrunas, L., & Amatriain, X. (2009, October). Towards time-dependant recommendation based on implicit feedback. In Workshop on context-aware recommender systems (CARS’09). - Rendle, S., Freudenthaler, C., Gantner, Z., & Schmidt-Thieme, L. (2009, June). BPR: Bayesian personalized ranking from implicit feedback. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence (pp. 452-461). AUAI Press. - Parra, D., Karatzoglou, A., Amatriain, X., & Yavuz, I. (2011). Implicit feedback recommendation via implicit-to-explicit ordinal logistic regression mapping. Proceedings of the CARS-2011. - Hidasi, B., & Tikk, D. (2012). Fast ALS-based tensor factorization for context-aware recommendation from implicit feedback. In Machine Learning and Knowledge Discovery in Databases (pp. 67-82). Springer Berlin Heidelberg.
Semana 5: Recomendación Basada en Contenido (Ivania Donoso)
Lecturas Semana 5
Obligatorias
- Pazzani, M. J., & Billsus, D. (2007). Content-based recommendation systems. In The adaptive web (pp. 325-341). Springer Berlin Heidelberg.
- Parra, D., & Brusilovsky, P. (2009, October). Collaborative filtering for social tagging systems: an experiment with CiteULike. In Proceedings of the third ACM conference on Recommender systems (pp. 237-240). ACM.
Sugeridas
- Balabanović, M., & Shoham, Y. (1997). Fab: content-based, collaborative recommendation. Communications of the ACM, 40(3), 66-72.
- Lops, P., De Gemmis, M., & Semeraro, G. (2011). Content-based recommender systems: State of the art and trends. In Recommender systems handbook (pp. 73-105). Springer US.
- De Gemmis, M., Lops, P., Semeraro, G., & Basile, P. (2008, October). Integrating tags in a semantic content-based recommender. In Proceedings of the 2008 ACM conference on Recommender systems (pp. 163-170). ACM.
Semana 6: Recomendación Hibrida
Clases Semana 6
- Recomendación Híbrida slides pdf (fecha blog post: 20 septiembre)
Lecturas Semana 6
Obligatorias - Robin Burke. 2002. Hybrid Recommender Systems: Survey and Experiments. User Modeling and User-Adapted Interaction 12, 4 (November 2002), 331-370. DOI=10.1023/A:1021240730564 http://dx.doi.org/10.1023/A:1021240730564
Sugeridas
- Celma, Ò., & Herrera, P. (2008). A new approach to evaluating novel recommendations. In Proceedings of the 2008 ACM conference on Recommender systems (pp. 179-186).
- Bostandjiev, S., O’Donovan, J., & Höllerer, T. (2012, September). Tasteweights: a visual interactive hybrid recommender system. In Proceedings of the sixth ACM conference on Recommender systems (pp. 35-42). ACM.
- Denis Parra, Peter Brusilovsky, User-controllable personalization: A case study with SetFusion, International Journal of Human-Computer Studies, Volume 78, June 2015, Pages 43-67, ISSN 1071-5819, http://dx.doi.org/10.1016/j.ijhcs.2015.01.007.
Semana 7: Context-Aware
Lecturas Semana 7
Obligatorias http://www.aaai.org/ojs/index.php/aimagazine/article/view/2364
Sugeridas
- Karatzoglou, A., Amatriain, X., Baltrunas, L., & Oliver, N. (2010, September). Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering. In Proceedings of the fourth ACM conference on Recommender systems (pp. 79-86). ACM.
- Shi, Y., Karatzoglou, A., Baltrunas, L., Larson, M., Hanjalic, A., & Oliver, N. (2012, August). TFMAP: Optimizing MAP for top-n context-aware recommendation. In Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval (pp. 155-164). ACM.
- Augusto Q. Macedo, Leandro B. Marinho, and Rodrygo L.T. Santos. 2015. Context-Aware Event Recommendation in Event-based Social Networks. In Proceedings of the 9th ACM Conference on Recommender Systems (RecSys ’15). ACM, New York, NY, USA, 123-130. DOI=http://dx.doi.org/10.1145/2792838.2800187
Semana 8: Practico Maquinas de Factoizacion
- Practico en clases de Maquinas de Factorizacion
- Comprimido con ipynb y datasets .zip
- Resultados del practico [html]
Lecturas Semana 8
Obligatorias Rendle, S. (2010). Factorization machines. In Data Mining (ICDM), 2010 IEEE 10th International Conference on (pp. 995-1000). IEEE.
Sugeridas - Rendle, S. (2012). Factorization machines with libfm. ACM Transactions on Intelligent Systems and Technology (TIST), 3(3), 57.
Semana 9: Propuestas de Proyecto
- Presentaciones de Propuestas de Proyecto por alumnos
Semana 10: Libre para trabajar en proyectos finales
Semana 11: Recomendación Centrada en el Usuario
Lecturas Semana 11
Obligatorias
Puedes elegir una de estas:
Knijnenburg, B. P., Willemsen, M. C., Gantner, Z., Soncu, H., & Newell, C. (2012). Explaining the user experience of recommender systems. User Modeling and User-Adapted Interaction, 22(4-5), 441-504.
Joseph A. Konstan and John Riedl. (2012). Recommender systems: from algorithms to user experience. User Modeling and User-Adapted Interaction 22, 1-2 (April 2012), 101-123.
Sean M. McNee, Nishikant Kapoor, and Joseph A. Konstan. 2006. Don’t look stupid: avoiding pitfalls when recommending research papers. In Proceedings of the 2006 20th anniversary conference on Computer supported cooperative work (CSCW ’06).
Sugeridas
- Chen He, Denis Parra, Katrien Verbert, Interactive recommender systems: A survey of the state of the art and future research challenges and opportunities, Expert Systems with Applications, Volume 56, 1 September 2016, Pages 9-27, ISSN 0957-4174, http://dx.doi.org/10.1016/j.eswa.2016.02.013.
- Pu, P., Chen, L., & Hu, R. (2011, October). A user-centric evaluation framework for recommender systems. In Proceedings of the fifth ACM conference on Recommender systems (pp. 157-164). ACM.
- Bostandjiev, S., O’Donovan, J., & Höllerer, T. (2012, September). Tasteweights: a visual interactive hybrid recommender system. In Proceedings of the sixth ACM conference on Recommender systems (pp. 35-42). ACM.
- Parra, D., & Brusilovsky, P. (2015). User-controllable personalization: A case study with SetFusion. International Journal of Human-Computer Studies, 78, 43-67.
- Parra, D., Brusilovsky, P., & Trattner, C. (2014, February). See what you want to see: visual user-driven approach for hybrid recommendation. In Proceedings of the 19th international conference on Intelligent User Interfaces (pp. 235-240). ACM.
Semana 12: Active & Reinforcement Learning
Lecturas Semana 12
Obligatorias
Sugeridas
- Golbandi, N., Koren, Y., & Lempel, R. (2010, October). On bootstrapping recommender systems. In Proceedings of the 19th ACM international conference on Information and knowledge management (pp. 1805-1808). ACM.
Semana 13: Métodos de Grafos para Sistemas Recomendadores
Lecturas Semana 13
Obligatorias
- David Liben-Nowell and Jon Kleinberg. 2007. The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58, 7 (May 2007), 1019-1031.
Sugeridas
- Zan Huang, Hsinchun Chen, and Daniel Zeng. 2004. Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering. ACM Trans. Inf. Syst. 22, 1 (January 2004), 116-142. DOI=http://dx.doi.org/10.1145/963770.963775
- Zan Huang, Wingyan Chung, Thian-Huat Ong, and Hsinchun Chen. 2002. A graph-based recommender system for digital library. In Proceedings of the 2nd ACM/IEEE-CS joint conference on Digital libraries (JCDL ’02). ACM, New York, NY, USA, 65-73. DOI=http://dx.doi.org/10.1145/544220.54423
- Gori, M., Pucci, A., Roma, V., & Siena, I. (2007, January). ItemRank: A Random-Walk Based Scoring Algorithm for Recommender Engines. In IJCAI (Vol. 7, pp. 2766-2771).
- Youwei Wang, Weihui Dai, Yufei Yuan, Website browsing aid: A navigation graph-based recommendation system, Decision Support Systems, Volume 45, Issue 3, June 2008, Pages 387-400, ISSN 0167-9236, http://dx.doi.org/10.1016/j.dss.2007.05.006.
Semana 14: Deep Learning
Clases Semana 14
Deep Learning slides
- Jueves : Presentaciones de Estudiantes
Lecturas Semana 14
Sugeridas
- Hidasi, B., Quadrana, M., Karatzoglou, A., & Tikk, D. (2016). Parallel recurrent neural network architectures for feature-rich session-based recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems (pp. 241-248). ACM.
Semana 15: Learning to Rank
Clases Semana 15
Learning to Rank slides
- Jueves: Presentaciones de Estudiantes
Lecturas Semana 15
Obligatorias
- Rendle, S., Freudenthaler, C., Gantner, Z., & Schmidt-Thieme, L. (2009). BPR: Bayesian personalized ranking from implicit feedback. In Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence (pp. 452-461). AUAI Press.
Sugeridas
- Shi, Y., Larson, M., & Hanjalic, A. (2010). List-wise learning to rank with matrix factorization for collaborative filtering. In Proceedings of the fourth ACM conference on Recommender systems (pp. 269-272). ACM.
Semana 16: Aplicaciones (Social/Trust/Music/Privacy/POI/Context-aware)
Clases Semana 16
- Martes y Jueves: Presentaciones de Estudiantes
Lecturas Semana 16
Obligatorias
- Yu, Y., & Chen, X. (2015, April). A Survey of Point-of-Interest Recommendation in Location-Based Social Networks. In Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence. link
Sugeridas
Trattner, C., Oberegger, A., Eberhard, L., Parra, D., and Marinho, L.B., 2016. Understanding the Impact of Weather for POI Recommendations. In Proceedings of RecTour 2016
Òscar Celma and Perfecto Herrera. 2008. A new approach to evaluating novel recommendations. In Proceedings of the 2008 ACM conference on Recommender systems (RecSys ’08).