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Explaining suggestions made by recommendation systems is key to make users trust and accept these

systems. This is specially critical in areas such as art image recommendation.
Traditionally, art works are sold in art galleries where people can see them physically, and artists have the

chance to persuade the people into buying them. On the other side, online art stores only offer the user the
action of navigating through the catalog, but nobody plays the persuading role of the artist. Moreover, few
works in recommendation systems do not provide a perspective of the many variables involved in the user
perception of several aspects of the system such as domain knowledge, relevance, explainability, and trust.

In this paper we aim to fill this gap by studying several aspects of the user experience with a recommender
system of artistic images, from algorithmic and HCI perspectives. We conducted two user studies in Amazon
Mechanical Turk to evaluate different levels of explainability, combined with different algorithms. While in
study 1 we focus only on a desktop interface, in study 2 we attempt to understand the effect of explanations in
mobile devices.

In general, our experiments confirm that explanations of recommendations in the image domain are useful
and increase user satisfaction, perception of explainability and relevance. In the first study, our results show
that the observed effects are dependent on the underlying recommendation algorithm used. In the second
study, our results show that these effects are also dependent of the device used in the study, but with a smaller
effect.

Finally, using the framework by Knijnenburg et al., we provide a comprehensive model, for each study,
which synthesizes the effects between different variables involved in the user experience with explainable
visual recommender systems of artistic images.
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2 Dominguez et al.

1 INTRODUCTION
Online artwork recommendation has received little attention compared to other areas such as
movies [2, 21] and music [9, 41]. Most research on artwork recommendation deals with studies
on museum data [4, 6, 56, 62], but there is little work with datasets of online artwork e-commerce
systems [26, 45]. Traditionally artwork sales happened in art galleries where people can see different
physical artworks, and artists had the chance to encourage people to buying their work. In the last
decade, online artwork sales have boomed with the influence of social media and new consumption
behavior by millennials, at the current growth rate, they are expected to reach $9.58 billion by
20201. With this type of e-commerce the user can navigate through the catalog, but nobody plays
the key role of the artist: encourage people buying their artworks.

Studying the recommendation of images is very different from recommending music or movies,
making it an attractive area for research. In order to validate whether a user likes a song or movie
we need to make sure they watched the movie or listened to the music [13]. In the case of visual art,
while there might be contextual factors involved, just by looking at a painting or photo, a user can
tell her positive or negative preference. It is also different from a user deciding if she likes fashion
simply from looking at a picture of the clothes; as size weight and fitting come into play later.
Nevertheless, fashion is certainly the topic dominating visual recommendation systems [27, 43].
The first works in the area of artwork recommendation date from 2006-2007 such as the CHIP

[4] project, which implemented traditional techniques such as content-based and collaborative
filtering for artwork recommendation at the Rijksmuseum, and the m4art system by Van den Broek
et al. [62], which used histograms of color to retrieve similar artworks where the input query
was a painting image. More recently, deep neural networks (DNN) have been used for artwork
recommendation and are the current state-of-the-art model [16, 26], which is rather expected
considering that DNNs are the top performing models for obtaining visual features for several
tasks, such as image classification [38], and scene identification [57]. In our recent work, Messina et
al. [45] compared the performance of visual features extracted with DNNs versus traditional visual
features (brightness, contrast, LBP, etc.), finding that DNN visual features had better predictive
accuracy. Moreover, they conducted a pilot study with a small group of art experts to generalize
their results, but they did not conduct a user study with a larger sample of expert and non-expert
art users. This aspect is important since past works have shown that off-line results might not
always replicate when tested with actual users [37, 44], and also domain knowledge is an important
variable to explain the user experience with a recommender system [3, 36, 49].

The aforementioned works miss one important aspect of the user experience with recommender
systems: how explainability combined with the recommendation algorithm affect the user experi-
ence with a visual art recommender system. There is one influential work in this area by Cramer et
al. [13], which studied the effect of transparency in the explanation of a content-based art recom-
mender. There are two implications of this work: (i) explaining to the user why a recommendation
was made increased acceptance of the recommendations, but (ii) trust in the system itself was not
improved by increased transparency in the explanation. These results are indeed important, but the
study had two limitations: (1) they tested only a single recommendation algorithm, and without
a baseline we cannot tell if the algorithm accuracy had an influence on the results, and (2) the
transparent explanation was always optional, since the users had to click a button "Why" in order
to receive the explanations. Another aspect missed is how the type of device used can influence the
user experience with a visual art recommender system. The study by Han et al. [23] for instance,
showed that it is possible to capture user preferences in a recommender system using a model of
actions available only on mobile multitouch devices (such as double-pinch or zooming with two

1https://www.forbes.com/sites/deborahweinswig/2016/05/13/art-market-cooling-but-online-sales-booming/
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Algorithmic and HCI aspects for explaining Artistic Image RecSys 3

fingers). Moreover, Amatriain [2] shows important differences in the Netflix interface between
desktop and mobile versions, since the type of users’ preference signal can be of different type.
Artwork recommendations based on visual features obtained from DNNs, although accurate,

are difficult to explain to users, despite current efforts to make the complex mechanism of neural
networks more transparent to users [48].

In contrast, features of visual attractiveness, despite being less accurate to predict user preference
[45], could be easily explained, based on color, brightness or contrast [55]. Explanations in recom-
mender systems have shown to have a significant effect on user satisfaction [61], but there are
more variables that affect the user experience, not only the explanation or the type of explanation.
We believe that variables like the device of the study and the option of explanation, also affect the
user experience in a significant way.
To the best of our knowledge there are no studies on the effect combined of the user device

and the optino of explanation. Hence, explaining recommendations by a Visual Content-based
Recommender (VCBR) [15] never has been tested in different types of devices in a single study.
There is also no research proposing a model that fully combines all the variables involved in the user
experience, using different types of devices, to explain several dimensions of the user experience
with a VCBR such as perception of relevance, diversity, satisfaction and trust.

Objective. In this paper, we study the effect of explaining artistic image suggestions. In particular,
we conduct two user studies on Amazon Mechanical Turk. The first one was under three different
interfaces and two different algorithms. The three interfaces were: i) no explanations, ii) explanations
based on similar images, and iii) explanations based on visual features. The two recommendation
algorithms were: Deep Neural Networks (DNN) and Attractiveness Visual Features (AVF). The first
algorithm represents items with latent features (a vector of real numbers) from a pre-trained neural
network so it can be considered accurate but a non-transparent algorithm, while the second method
uses explicit visual features such as image brightness, sharpness, etc. Therefore, we consider it
less accurate, but a more transparent algorithm. In the second study we used one algorithm (the
best from study 1) and two interfaces, designed for two types of devices, desktop and mobile. In
each interface there were two conditions of explanation: optional and mandatory. The algorithm in
this second study was based only on visual features from deep neural networks. In both studies,
we used images provided by the online store UGallery (http://www.UGallery.com/). Finally, we
contribute with two Structural Equation Models based on the framework by Knijnenburg et al [36]
in order to fully explain the user experience with an explainable VBCR of artistic images.

Research Questions. To drive our research, the following five questions were defined:

• RQ1. Given a recommender interface with different levels of explanations (none, similarity-
based, feature-based), which level is perceived as most useful?
• RQ2. Considering the visual recommender algorithm chosen, one accurate, but non-transparent
and another less accurate, but more transparent, are there observable differences in how the
levels of explainability in the interfaces are perceived?
• RQ3. How do independent variables such as algorithm, explainable interface and domain
knowledge interact in order to explain the user experience (UX) with the recommender
system in terms of several measures?
• RQ4. When using one algorithmwith high accuracy, are there significant differences between
types of devices used (mobile vs. desktop)?
• RQ5 Does it have an effect on UX if the recommendation explanations are left optional rather
than always visible?
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4 Dominguez et al.

Using Amazon’s Mechanical Turk. One important decision we made in order to collect user
feedback for our experiments was by using Amazon’s Mechanical Turk (AMT). While some authors
raise important risks on conducting studies in AMT which can hinder ecological validity [24], other
studies show that AMT can be a safe source to conduct user studies [5], while others reach similar
conclusions, but under certain constraints to prevent misuse [32]. Several studies have used AMT
in the past for validating hypotheses with respect to recommendation systems [3, 7, 35]. Based on
these previous attempts we followed certain criteria to decrease the risk of making our evaluation
invalid. Among them, using questions to check for users’ attention in several steps of the study, as
well as making sure that the answers had sufficient intra-user variability in pre- and post-study
surveys.

Outline. Our work is structured as follows: In Section 2 we survey relevant related work and
explain how our research differs from previous work in the area. The following three sections are
about the study 1. In the first section, we describe the methods and materials. We introduce the
explainable interface recommendation approach, the algorithms, and discuss the study procedure
to evaluate them. In the second section we present the results of the study. In the last of these
three sections, we present and discuss the study SEM, which connects all the studied variables. The
following three sections have the same structure of the three mentioned before, but are about the
study 2. To finish, section 11 concludes the paper and provides an outlook for future work.

2 RELATEDWORK
In this section we present the previous work that motivates our research. Since the areas described
might have been explored in different research fields, we focus mainly on summarizing the work
directly related to personalization and recommender systems. Hence, we classify the most relevant
related work in three areas: a) Artwork Recommender Systems, b) Explainability and transparency,
c) User-centric evaluation of recommender systems and d) Multi-touch devices.

2.1 Artwork Recommender Systems
The works of Aroyo et al. [4] with the CHIP project and Semeraro et al. [56] with FIRSt (Folksonomy-
based Item Recommender syStem) made early contributions to this area using traditional techniques.
More complex methods were implemented recently by Benouaret et al. [6]. They used context
information from a mobile application that makes a museum tour recommendation. Finally, the
work of He et al. addresses digital artwork recommendations based on pre-trained deep neural
visual features [26], and the work of Dominguez et al. [16] and Messina et al. [45] compared neural
against traditional visual features. None of the aforementioned works performed a user study under
explanation interfaces to generalize their results.

2.2 Explainability and transparency in Recommender Systems
Herlocker et al. [28] introduced the idea of explaining recommendations as a way of making the
system more transparent to users’ decisions and to improve users’ acceptance of recommender
systems. Based on successful previous results from expert systems, they expected that interfaces
of collaborative filtering recommenders would benefit from explanations as well. They studied
different ways to explain recommendations and rated histograms as “the most compelling way
to explain the data behind the prediction.” A study with 210 users of MovieLens, a well-known
movie recommender system, showed that users value explanations and would like to add them
to the recommender interface (86% of the respondents of a survey). The authors also think that
explanation facilities can increase the filtering performance of recommender systems, though they
could not find explicit evidence to support it and called for further well-controlled studies in this
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Algorithmic and HCI aspects for explaining Artistic Image RecSys 5

area. Furthermore, [59] noticed that explanations might have different objectives, and identified
seven different aims for explanations: transparency, scrutability, trustworthiness, effectiveness,
persuasiveness, efficiency and satisfaction. More recently, in the handbook of recommender systems
there is a whole chapter that addresses the design and evaluation of explanations in recommender
systems [60].

One of the main effects of the explainability of intelligent systems is viewed in the user’s percep-
tion of trust. A recent study in intelligent systems [29] showed that the effect of the explanation
in the user’s trust changes over time. This study showed that people who were exposed to the
intelligent system without explanation decreased their trust over time, but the ones who received
explanations increased their trust. This happened because users who do not receive an explanation
were affected most by the transparency of the system. The role of transparency in recommender
systems is discussed in [58], showing that ”people feel more confident with recommendations that
they perceive more transparent.”
Cramer et al in their work [13] studied topics very similar to those addressed in our own

work. They analyzed the effect of transparency and trust of an artwork recommender system. The
difference with respect to our study is that they did not consider the effect of different interfaces in
different devices. Also, we are using newer algorithm than the one used in their work.
A recent work in the area of explainable recommendations is the work of Zhang et al. [69].

This work is a survey of the recent works in the topic of explainable recommendations. They
provide examples of many types of explanation, but nothing about the art domain. Also, the topic
of explainable deep learning for recommendations has a short review and it is a sub-section of
the chapter ”Open Directions and New Perspectives”. So the problems addressed in our paper are
something that is still open.

Scrutable models is another topic related to explainability and trust. There are several works on
this topic, one of the first papers in this area is the work by Cook and Kay [11]. They provided the
users the possibility of accessing the system’s model that represent the user. This paper showed
that the participants of their study were very interested in knowing more about their users models
and how it works. One more recent work is the paper by Wasinger et al. [65] where they present
a scrutable user model in a mobile application of a personalized restaurant menu. Their findings
show that most of the users find the application more useful than the traditional menu because of
the scrutability of the software. Since the algorithms in our paper cannot be configured by the user,
we rely on using explanation to do our algorithms somehow scrutable.

In terms of applications, Zhao et al. [70] presented Pharos - a content-centric system able
to recommend items, people and communities. They try to tackle the cold-start problem and
also explain the recommendations by visualizing a social map with terms organized in latent
communities. A within-subjects study with ten users shows that Pharos helped the subjects to
complete exploratory tasks faster and better than BlogCentral, an existent tool. Although user
knowledge and tasks were considered and they did not have significant differences between Pharos
and BlogCentral, the small amount of subjects calls for a larger user study to generalize these
results. Another drawback of this system is the lack of personalization. The social map displayed
the same communities and terms to every user, and users’ feedback suggests adding this feature in
a future version. Zhang et al. [68] went beyond textual explanation by presenting a visual interface
for a critiquing-based RS. In an e-commerce system, they present various critiques by a set of
meaningful icons, and their results show how the visual presentation and the aided interaction
improve the shopping experience of the users. The difference with these works is that they do not
work with visual art recommendations.

In [39] there is a discussion on how intelligent systems should explain themselves. To investigate,
they consider two aspects of an explanation: soundness (how truthful the explanation is) and
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6 Dominguez et al.

completeness (the extent to which the explanation describes the underlying system). The two main
findings were that completeness is more important than soundness and that oversimplification
can lead to users trusting the system less. More recently Cai et al [8] evaluated normative versus
comparative explanations to explain the results of a deep neural net sketch-recognition algorithm.
In our work we tested comparative explanations by saying "this painting is X % similar than this
one"

A recent survey [1] indicates that the current XAI research is not well integrated with knowledge
from visualization, cognitive psychology, perception and human-computer interaction (HCI). This is
also argued in [46], where the researcher states that current XAI research relies on the researcher’s
intuitions of what a "good" explanation is instead of relying on frameworks from social sciences.
Wang et al. [64] proposed a theory driven framework for designing XAI models. They propose
this framework for classification and clustering applications, that in general are not personalized
like recommender systems. Moreover, the current works in XAI usually do not deploy or evaluate
explanations with interactive applications or by conducting studies with real users [1], although
there are exceptions [8, 39, 68, 70].

2.3 User-centric evaluation of recommender systems
Traditionally, evaluation of recommender systems has relied mainly on prediction accuracy, but
over the years researchers and professionals implementing recommender systems have reached
consensus that this evaluation must consider additional measures such as diversity, novelty, and
coverage. Beyond these metrics, recent research has increasingly considered user-centric evaluation
measures such as perceived diversity, controllability and explainability. For instance, Ziegler et al.
[71] studied the effect of diversification in lists of recommended items, Tintarev and Masthoff [59]
investigated on recommender systems’ transparency, Cramer et al. [13] studied explainability in
recommender systems, and Knijnenburg et al. [35] tried to explain the effects of user-controllability
on the user experience in a recommender system. Nevertheless, as a result of a lack of a unified
framework, comparing the results of different studies or replicating them is not a simple task. Two
recent user-centric evaluation frameworks addressed this issue. On one side, Pu et al. [51] proposed
ResQue, identifying four main dimensions (perceived quality, user beliefs, user attitudes and
behavioral intentions) and a set of constructs to evaluate each one. On the other side, Knijnenburg
et al. [36] defined dimensions and relations between them (objective systems aspects, subjective
system aspects, experience, interaction, situational characteristics and personal characteristics), but
encouraged the users of this framework to choose their own constructs based on some specified
guidelines. We finally decided to use this last framework to evaluate our experiments from a user
centric view, because it gives a holistic view of the results involved in the user study.

2.4 Mobile devices
Recent research shows that the multi-touch interaction (MTI) of smartphones and tablets can help
predict user preference beyond the actions available in the desktop environment. In this line of
research, Guo et al. [22] developed a model that improved the ranking of search results by using
interactions available on mobile multitouch devices compared to a the usual click-log interactions
on a desktop environment. Similarly, Han et al. [23] were able to improve the prediction of users’
favorite items on non-ranked lists of papers by considering multitouch interactions such as dragging
direction, speed and position. These studies found that the same interaction can represent different
user actions in mobile and desktop devices. These results encourage us to test whether providing
explanations in different formats (in text, lists, graphs, etc.) and in different devices (desktop and
multi-touch) will show important differences attributed to the interactions available under each
technology.

, Vol. 1, No. 1, Article . Publication date: July 2020.
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Algorithmic and HCI aspects for explaining Artistic Image RecSys 7

3 STUDY 1: ALGORITHMS AND EXPLANATION STYLES
In the following subsections we describe in detail our study methods. We first introduce the
dataset chosen for the purpose of our study. Second, the two algorithms chosen for our study are
revealed. Third, we explain the design choices for the three different explainable visual interfaces
implemented, which we evaluate. To finish, we explain the user study procedure.

3.1 Study 1: Hypotheses
Based on analyses of the results from previous literature, we set the following hypotheses for study
1:
• Hypothesis 1: A recommendation interface with explanations will be better perceived than an
interface without explanations. Among the interfaces with explanation, the most transparent
will be perceived as most useful.
• Hypothesis 2: The visual content-based recommender algorithm chosen (accurate, not trans-
parent vs. transparent, but not accurate), will have an interaction on how the explainable
recommmendation interfaces are perceived.
• Hypothesis 3: Several variables beyond algorithm and the recommendation interface explain
the user experience (UX) with the recommender system, among them, the user experience
with the domain.

3.2 Study 1: Design
This user study has a mixed design. The within-subjects variable is an algorithm, for which we
consider two types based on the mechanism to extract visual features from the images: Deep
Neural Networks (DNNs) and Attractiveness visual features (AVF). The between subjects variable
corresponds to the type of explainable interface: (i) non-explainable, (ii) explainable, but not
transparent, and (iii) explainable and transparent. The main difference between conditions (ii) and
(iii) lies in the characteristics of the visual features obtained with the recommendation methods.
While DNN outputs accurate visual features, they are not interpretable by humans; they are just
latent vectors with numbers. On the other side, AVF outputs visual features interpretable by humans
(contrast, brightness, naturalness, etc.), but it is less accurate than DNN in predicting visual user
preferences.

Although the main contribution of this study is related to the effects of explainability on visual
recommendation systems, we decided to set algorithm type as the within-subject factor due to
results from our own previous studies. In [16, 45] we studied different features for visual art
recommendations, which were evaluated off-line with a traditional train/validation/test protocol,
and we found that features from DNNs resulted in better user preference rankings than AVF.
However, in the latest paper by Messina we also conducted a small study with 8 expert curators,
and although DNN was better than AVF, the difference in some metrics was not significant, such
as precision@10. For this reason, we wanted to make sure that in this study we had enough
statistical power to identify a difference in algorithms (DNN vs. AVF), as well as interactions with
different types of explainable interfaces upon different variables measured in user-centric studies.
For this reason, we chose algorithm as within-subjects factor, to confirm in this study what was
implied in our previous work in Messina et al. (2018).

3.3 Apparatus & Materials
For the purpose of our study we rely on a dataset provided by the online web store UGallery, which
has been selling artwork for more than 10 years [66]. They support emergent artists by helping
them sell their artwork online. For our research, UGallery provided us with an anonymized dataset

, Vol. 1, No. 1, Article . Publication date: July 2020.
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8 Dominguez et al.

Fig. 1. Model architecture of the AlexNet Convolutional Deep Neural Network used to extract visual features
from images.

of 1,371 users, 3,490 items and 2,846 purchases (transactions) of artistic artifacts, where all users
have made at least one transaction. On average, each user bought 2-3 items over recent years.

3.4 Visual Recommendation Approaches
As mentioned earlier in this paper, we make use of two different content-based visual recommender
approaches in our work. The reason for choosing content-based methods over collaborative filtering-
based methods is grounded in the fact that once an item is sold via the UGallery store, it is not
available anymore (every item is unique) and hence traditional collaborative filtering approaches
do not apply.

3.4.1 DNN Visual Feature (DNN) Algorithm. The first algorithmic approach we employed was
based on image similarity, itself based on features extracted with a deep neural network. The output
vector representing the image is usually called an image’s visual embedding. The visual embedding
in our experiment was a vector of features obtained from an AlexNet, a convolutional deep neural
network developed to classify images [38], which architecture is shown in Figure 1. In particular,
we use an AlexNet model pre-trained with the ImageNet dataset [14]. Using the pre-trained weights,
for every image a vector of 4,096 dimensions was generated with the Caffe framework [31]. We
resized every image to a 227x227 image. This is the standard pre-processing needed to use the
AlexNet.

3.4.2 Attractiveness Visual Features (AVF) Algorithm. The second content-based algorithmic rec-
ommender approach employed was a method based on visual attractiveness features. San Pedro
and Siersdorfer in [55] proposed several explainable visual features that to a great extent, can
capture the attractiveness of an image posted on Flickr. Following their procedure, for every image
in our UGallery dataset we obtain a feature vector that represents, using the OpenCV software

, Vol. 1, No. 1, Article . Publication date: July 2020.
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Algorithmic and HCI aspects for explaining Artistic Image RecSys 9

Fig. 2. Design choices for explainable recommender interfaces, based on Friedrich and Zanker [18]. In (a)
we explain the recommendation based on transparent visual features, while in (b) we explain based on item
similarity, without details of the features used.

library2: brightness, saturation, sharpness, colorfulness, naturalness, entropy, and RGB-contrast.
The following offers a more detailed description of these features:
• Brightness: Measures the level of luminescence of an image. For images in the YUV color space,
we obtain the average of the luminescence component Y.
• Saturation: Measures the vividness of a picture. For images in the HSV or HSL color space, we
obtain the average of the saturation component S.
• Sharpness: Measures how detailed the image is.
• Colorfulness: Measures how distant the colors are from the gray color.
• Naturalness: Measures how natural the picture is, grouping the pixels in Sky, Grass and Skins
pixels and applying the formula in [55].
• RGB-contrast: Measures the variance of luminescence in the RGB color space.
• Entropy: Shannon’s entropy is calculated, applied to the histogram of values of every pixel in
grayscale used as a vector. The histogram is used as the distribution to calculate the entropy.
These metrics have also been used in another study [17], where authors show how to nudge

people with attractive images to take up more healthy recipe recommendations. To compute these
features, we used the original size of the images and did not pre-process them. More details on

2http://opencv.org/
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10 Dominguez et al.

Fig. 3. Interface 1: Baseline recommendation interface without explanations.

how to calculate these visual features can be found in the articles of San Pedro and Siersdorfer [55],
as well as in Messina et al. [45].

3.4.3 Computing Recommendations. Given a user u who has consumed a set of artworks Pu , a
constrained profile size K , and an arbitrary artwork i from the inventory, the score of this item i to
be recommended to u is:

score (u, i )X =

min{K, |Pu | }∑
r=1

max
jϵPu

(r ) {sim(V X
i ,V

X
j )}

min{K , |Pu |}
, (1)

whereV X
z is a feature vector of item z obtained with method X , where X can be either a pre-trained

AlexNet (DNN) or attractiveness visual features (AVF). max (r ) denotes the r -th maximum value,
e.g., if r = 1 it is the overall maximum, if r = 2 it is the second maximum, and so on. We compute
the average similarity of the top-K most similar images, because as shown in Messina et al. [45], for
different users, the recommendations match better using smaller subsets of the entire user profile.
Users do not always look to buy a painting similar to one they bought before, but they look for one
that resembles a set of artworks that they liked. sim(Vi ,Vj ) denotes a similarity function between
vectors Vi and Vj . In this particular case, the similarity function used was cosine similarity:

sim(Vi ,Vj ) = cos (Vi ,Vj ) =
Vi ·Vj

∥Vi ∥∥Vj ∥
(2)

Both methods use the same formula to calculate the recommendations. The difference is in the
origin of the visual features. For the DNN method, the features were extracted with the AlexNet
[38], and in the case of AVF, the features were extracted based on San Pedro et al. [55].
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Algorithmic and HCI aspects for explaining Artistic Image RecSys 11

Fig. 4. Interface 2: Explainable recommendation interface with textual explanations and top-3 similar images.

3.5 The Explainable Recommender Interfaces
In our study we explore the effect of explanations in visual content-based artwork recommender
systems. In order to guide our design of explanation interfaces, we used the taxonomy introduced
by Friedrich and Zanker [18]. Based on this taxonomy, three dimensions characterize explanations:
(i) the recommendation paradigm (collaborative filtering, content-based filtering, knowledge-based,
etc.), (ii) reasoning model (white-box or black-box explanation), and (iii) the exploited information
categories (user model, recommended item, alternatives). In our case, the dimensions (i) recommen-
dation paradigm and (iii) information categories are set, since we are using a content-based filtering
approach (CBVR) and the information used to make an explanation is directly obtained from the
item and visual features of images. Then, our alternatives for designing explainable interfaces in
this study are in the reasoning model: white-box (transparent) or a black-box (opaque) explanation.

These alternatives depend on the type of visual features we use to represent the images. The
vector representation of an image obtained from a Deep Convolutional Neural network is rather
opaque since the features obtained are unitelligible [38], while the representation obtained with
attractiveness visual features [55] such as brightness, colorfulness, or luminance is comprehensible
for humans.
Combining these options, we use explanations based on the content-based paradigm as pre-

sented by Friedrich and Zanker [18], where the attractiveness visual features are used to explain
the recommendations in a white-box fashion, Figure 2 (a). Alternatively, we explain them in a
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12 Dominguez et al.

Fig. 5. Interface 3: Explainable and transparent recommendation interface with features’ bar chart and top-1
similar image.

black-box fashion, just by indicating which similar items in the user preference list produced the
recommendation, as in Figure 2 (b).

Our study then contains interface conditions depending on how recommendations are displayed:
i) no explanations, as shown in Figure 3, ii) black-box explanations based on the top-3 most similar
images a user liked in the past, as shown in Figure 4, and iii ) transparent explanations employing
a bar chart of attractiveness visual features, as well as showing the most similar image of the user’s
item profile, as presented in Figure 5. In all three cases the interfaces are vertically scrollable. While
Interface 1 (baseline) is able to show 5 images in a row at the same time, interfaces 2 and 3 are
capable of showing one recommended image per row to the user.

3.6 User Study Procedure
To evaluate the performance of our explainable interfaces we conducted a user study in Amazon
Mechanical Turk using a 3x2 mixed design: 3 interfaces (between-subjects) and 2 algorithms
(within-subjects, DNN and AVF). The table within Figure 6 summarizes the conditions. The interface
conditions were: Condition 1: interface 1 without explanations, as in Figure 3; Condition 2: using
interface 2, each item recommendation is explained based on the top 3 most similar images in
the user profile, as in Figure 4; and Condition 3: only for AVF algorithm, based on a bar chart of
visual features, as in Figure 5, but for DNN we used the explanation based on the top 3 most similar
images, because the neural embedding of 4, 096 dimensions has no transparent (human-interpretable)
features to show in a bar chart.
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Condition AVF DNN

Interface 1
(AVF & DNN)

No explanation No explanation

Interface 2
(AVF & DNN)

Explanation based on 
top3 similar images

Explanation based on 
top3 similar images

Interface 3 (AVF)
&
Interface 2 (DNN)

Explanation based on 
barchart of visual 
features

Explanation based on
top3 similar images

Swap order of 
algorithm randomly

pre-study survey post-DNN
survey

post-AVF
survey

Interface:
Between 
subjects

Algorithm: Within subjects (repeated measures)

preference
elicitation

Fig. 6. Study procedure. After the pre-study survey and the preference elicitation, users were assigned to one
of three possible interfaces. In each interface they evaluated recommendations of two algorithms: DNN and
AVF.

To compute the recommendations for each of the three interface conditions, two recommender
algorithms were chosen: one based on DNN visual features, and the other based on attractiveness
visual features (AVF). The order in which the algorithms were presented was chosen at random.

With respect to the complete study workflow, as shown in Figure 6, participants accepted the
study on Mechanical Turk (https://www.mturk.com) and were redirected to a web application. After
accepting a consent form, they were redirected to the pre-study survey, which collects demographic
data (age, gender) and a subject’s previous knowledge of art based on the test by Chatterjee et al.
[10].
Following this, they had to perform a preference elicitation task. In this step, the users had to

“like” at least ten paintings, using a Pinterest-like interface. Next, they were randomly assigned to
one interface condition. In each condition, they again provided feedback (rating with a 1-5 scale to
each image) to top ten recommendations of images employing either the DNN or the AVF algorithm
(also assigned at random as previously mentioned). Finally, the participants were asked to answer a
post-algorithm survey (1). The dimensions evaluated in the post-algorithm survey are the same for
DNN and AVF algorithms. They were presented in the form of statements where the user had to
indicate their level of agreement in a 0 (totally disagree) to 100 (totally agree) scale. These questions
are adapted from dimensions presented in the ResQue framework [51] and from previous user
studies on recommendation systems [34, 49].
We also measured the cognitive load perceived by the users during the experiment using the

NASA TLX (task load index) workload assessment [25]. This evaluation was conducted in the
post-algorithm survey.

This process is repeated for the second algorithm aswell. Once the participants finished answering
the second post study survey, they were redirected to the final view, where they received a survey
code for later payment in Amazon Mechanical Turk.
3.6.1 Checking valid subjects. Since we ran this study on AMT, we had to ensure that our users
were valid subjects, i.e., they were seriously paying attention to the study. With this goal, we set
two validation questions: one in each study survey.
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14 Dominguez et al.

Table 1. Post study survey questions. The last three questions correspond to NASA TLX. We also asked the
open question If explanations did not make sense to you, explain why? and asked on any comments they had
on the study.

Representative name Question
Understand I understood why the art images were recommended to

me.
Relevance The art images recommended matched my interests.
Diversity The art images recommended were diverse.
Interface satisfaction Overall, I am satisfied with the recommender interface.
Use again I would use this recommender system again for finding

art images in the future.
Recommend I would suggest that my colleagues use this recommender

system when they want to find art images in the future.
Trust I trusted the recommendations made.
Explainable The explanations over the items recommended made

sense to me.
Mental demand How mentally demanding was the task?
Rush How hurried or rushed was the pace of the task?
Insecure How insecure, discouraged, irritated, stressed, and an-

noyed were you?

• Pre-Study Survey: On average, North Pole is warmer than the Sahara desert. Answers were
Yes or No, to be chosen with radio buttons.
• Post-Algorithm Survey: On average, an elephant is heavier than a mouse. Answer was a
number between 0 (no agreement) to 100 (full agreement), chosen with a traditional slider
control widget.

To decide whether a user was paying attention, we set two conditions: (a) The user answered Yes
to the first statement, and (b) The user answered with a number between 95 and 100 to the second
statement. If any of the two conditions previously defined was not met, the user was classified as
an invalid subject and her records were discarded from the data analysis and final results reported
in this article.

4 RESULTS STUDY 1
The study consisted of 200 users out of which 121 were able to answer our validation questions
successfully and hence were included in the results. Filtering out users not responding properly to
these questions allowed us to include 41 users for the Interface 1 condition, 41 users for Interface 2
condition and 39 users for Interface 3 condition. In total, participants were paid an amount of 0.40
USD per study, which took them around 10 minutes to complete.

Demographics. Our subjects were between 18 to over 60 years old. Thirty-six percent were
between 25 to 32 years old, and 29% between 32 to 40 years old. Females made up 55.4%. Twelve per-
cent just finished high school, 31% had finished some college degree, 57% had a bachelor’s, master’s
or Ph.D. degree. Only 8% reported some visual impairment. With respect to their understanding
of art, 20% did not have experience, 48% had attended 1 or 2 lessons, and 32% reported to have
attended 3 or more lessons at high school level or above. Just 20% of our subjects reported that
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Algorithmic and HCI aspects for explaining Artistic Image RecSys 15

they almost never visited a museum or an art gallery; 36% do this once a year; and 44% do this once
every 1 to 6 months.

5 A MODEL OF THE UXWITH AN ART RECOMMENDER
To provide a comprehensive and complete understanding of the dependent and independent
variables involved in this study, as well as their relationships, we conducted an analysis based
on Structural Equation Models (SEM). In order to reduce the number of variable combinations
and to cluster the variables in cohesive groups, we followed the recommender systems evaluation
framework by Knijnenburg et al. [36]. In this way, we could group the variables in: (a) Personal
Characteristics, (b) Objective System Aspects, (c) Subjective System Aspects, (d) Interactions, and
(e) User Experience.

Prior to this analysis, we conducted a Confirmatory Factor Analysis (CFA) to reduce the number
of variables and group them in more understandable constructs to be included in the SEM. CFA is
used to test whether the created factors are consistent with the hypothesized model.

5.1 Confirmatory Factor Analysis
We conducted a CFA and examined the validity and reliability scores of the constructs measured in
our study. The results are summarized in Table 2. We constructed 2 factors: Effort and Satisfaction.
The items used share at least 56.2% of their variance with their designated construct. To ensure
the convergent validity of constructs, we examined the average variance extracted (AVE) of each
construct. The AVEs were all higher than the recommended value of 0.50, indicating adequate
convergent validity. To ensure discriminant validity, we ascertained that the square root of the AVE
for each construct was higher than the correlations of the construct with other constructs.
Table 2. Results of the confirmatory factor analysis (CFA), indicating two constructs: Effort and Satisfaction.
Questions in gray are the ones that were removed from the factor.

Construct Item Loading
Effort How mentally demanding was the task? 0.750
α = 0.865
AVE = 0.6883

How insecure, discouraged, irritated, stressed, and an-
noyed were you?

0.826

How hurried or rushed was the pace of the task? 0.906
Satisfaction
α = 0.955

I would use this recommender system again for finding
art images in the future

0.973

AVE = 0.880 Overall, I am satisfied with the recommender interface. 0.875
I would suggest that my colleagues use this recommender
systemwhen they want to find art imagesin the future.

0.963

The art images recommended matched my interests.
I trusted the recommendations made.

5.2 Structural Equation Model
We subjected the 2 factors we found in the CFA: all the items that could explain and mediate
relations and the experimental conditions to structural equation modeling, which simultaneously
fits the factor measurement model and the structural relations between factors and other variables.
The model has a good 3 fit: χ 2 (72) = 103.935, p = .008; RMSEA = 0.043, 90%CI : [0.022, 0.060],
3A model should not have a non-significant χ 2 (p > .05), but this statistic is often regarded as too sensitive. Hu and Bentler
[30] propose cut-off values for other fit indices to be: CFI > .96, TLI > .95, and RMSEA < .05, with the upper bound of its 90%
CI below 0.10.
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16 Dominguez et al.

Fig. 7. The structural equationmodel for the data of the experiment using Knijnenburg’s evaluation framework
for recommender systems. Significance levels: ∗ ∗ ∗p < .001, ∗ ∗ p < .01, ∗p < 0.05. R2 is the proportion of
variance explained by the model. Numbers on the arrows (and their thickness) represent the β coefficients
(and standard error) of the effect. Factors are scaled to have an SD of 1.

CFI = 0.997, TLI = 0.996. We did not find any significant interaction effects between the the
experimental manipulation.
To rule out a potential learning effect of users in the within-subjects condition (algorithm), in

the analysis we also added a variable that represents whether the experiment is the first or second
session for the same user. This variable was found not significant in all of the regressions analyzed,
thus providing evidence of no asymmetric transfer effects between consecutive sessions.
Effect of algorithm: the algorithm used to create the features has a positive effect on under-

standability. When using DNN features users tend to understand better as compared to making
content-based recommendations using AVF. DNN also has a positive effect on the ratings.
Effects of interface on understandability: the model shows that the interfaces with explanations

have a positive effect on understandability, which then has a positive effect on satisfaction, on its own
andmediated by trust. This result is consistent with the model found in [20], that indicates that users
are "more satisfied with explanation facilities which provide justifications for the recommendations".
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Algorithmic and HCI aspects for explaining Artistic Image RecSys 17

Effects of interface on time: explainable interfaces also have a positive effect on time, that also
has a positive effect on satisfaction. This suggests that users need to take time to understand and
analyze explanations. Gedikli et al, in [20], also found this effect on their model.
Effect of trust in satisfaction: the effect that trust has upon satisfaction is almost 3 times larger

than the effect of understandability. This highlights the fact that user satisfaction strongly depends
on how much users trust the system they are interacting with. It is interesting to notice that, based
on our model, neither the interface nor the algorithm used to create the features has a direct effect
on trust. Both effects are mediated by understandability, which could mean that users only trust
something they understand.
Effect of effort: effort has a negative effect on understandability and trust. When users have to

exert too much effort when interacting with the system, they also perceive less understanding of
the recommendations.

5.3 Discussion study 1
With respect to Hypothesis 1 we found that users were more satisfied with interfaces that provided
explanations. These kind of interfaces increased understandability, which increased trust and
satisfaction with the system. It also increased the time users spent on the system, which increased
satisfaction. These results show that the hypothesis was right. The user felt more comfortable with
a system that is more transparent. Just by adding a simple explanation, made the users increase
their satisfaction. The users spent more time in the system, probably because they enjoyed the
experience. All of this made us rethink the importance of the user centric desing, and its role in the
design of entire systems. If you gain the trust of the user, you gain her atention, and the systems
need the user atention and participation to live.

WithHypothesis 2 we found that amore accurate algorithm, even if it is not transparent, increased
understandability, which increased satisfaction. A better algorithm also increased the average
ranking users provided to the images. There were no significant differences in how users perceived
transparency, but they were more satisfied with the overall system when they were exposed to
DNN. This showed us the importance the accuracy of an algorithm in a system. Independent of the
transparency of the system, if you are not using an algorithm that has a decent performance, the
understability and satisfaction of the user is affected. The design of the interface of the system is
important, but it cannot be isolated from the algorithm. This is a core factor in terms of the user
experience, even if the user does not know anything on how it works.

Finally, w.r.t. Hypothesis 3, we found that the user experience is affected and explained by more
variables than only the interface and algorithm. Time, Trust, Understanability and Effort were
affecting the user experience in conjunction with the Interface and the Algorithm. Also, the more
users spend time making art, the more their satisfaction with the system.

6 STUDY 2: DEVICE TYPE AND EXPLANATION OPTIONALITY
6.1 Study 2: Hypotheses
By analyzing the results from previous literature, we set the following hypotheses for study 2:

• Hypothesis 4: If we test the same algorithm in different devices, there will be significant
differences in the user perception.
• Hypothesis 5: If the user can choose whether or not to receive a recommendation’s explana-
tion; this will have a positive effect in the user experience.

, Vol. 1, No. 1, Article . Publication date: July 2020.



DRAFT
, t

o
be

pu
bl

ish
ed

in
ACM

Ti
iS

10
.1

14
5/

33
69

39
6

18 Dominguez et al.

6.2 Study 2: Design
The study design is a between subjects with two variables: device (mobile, Desktop) and explanation
obligatoriness (Optional, Mandatory)

In this study we used many materials and methods from the first study. We briefly describe the
elements that were reused from study 1 and we provide more details on the new aspects used in
study 2.

6.3 Materials
In this study we also used the dataset provided by Ugallery, described in 3.3.

6.4 Visual Recommendation Approach
In this second study we were only concerned with studying the effect of explanations, so we kept
a single algorithm throughout all the user study. Concretely, we implemented a hybrid content-
collaborative recommendation algorithm inspired by both Youtube’s recommender system [12]
and VBPR [27]. Like the traditional Matrix Factorization approach, we model user-item preferences
x̂u,i as the dot product between a user vector and an item vector, i.e. x̂u,i = u⃗ · i⃗ . However, instead
of learning specific latent vectors for each user and item, we trained a single deep neural network
with a fixed number of parameters capable of embedding any user and item into a latent vector
space based on visual content. For items, we use ResNet50 to extract an R2048 vector that goes
through 2 additional layers with SELU4 activations to produce a final R128 item vector i⃗ . For users,
inspired by Covington et al. [12] we compute the latent vector of each item in the user’s profile,
then compute their average and finally apply 3 additional layers with SELU activations to generate
a final R128 user vector u⃗. This design allowed us to quickly generate user vectors in real-time
based on the artworks liked during the preference elicitation stage of the study, without having to
train a new set of variables for each new user that enters the system. To train this network, we fol-
lowed the approach of VBPR [27], namely, training the network for ranking with the BPR pairwise
optimization framework [52], using the purchase transactions provided by UGallery as ground truth.

6.4.1 Computing Recommendations. Recommendations are generated in two stages: a filtering
stage followed by a re-ranking stage. In the filtering stage we use our proposed neural network
to compute a user vector from the items the user liked during the preference elicitation. The dot
product between this user vector and each candidate item vector gives us the user’s preference for
each candidate item. We keep the top 100 candidate items from this stage and ignore the rest. Next,
in the re-ranking stage we re-rank these 100 images so as to generate a top-10 recommendation
which is both visually similar and diverse as follows: for each item we retrieve a R200 vector5. Then,
for each candidate item we find 3 things: 1) the user’s liked item most similar to it, 2) the similarity
score with this liked item and 3) the ID of the visual cluster of this liked item6. We compute these
similarities using cosine similarity. We then group candidate items by cluster ID (obtained from the
most similar liked item in each case as explained before) and rank candidate items within each group
by their similarity score. Finally, we proceed to fill a top-10 recommendation by rounds. In each
round, we sort the groups based on the similarity score of the item at the top of the group. For each
group we then pick the top item, add it to the recommendation list and remove it from the group.
We keep repeating rounds like this until the top-10 recommendation is complete. The rationale
4SELU stands for Scaled Exponential Linear Unit, a new activation function with self-normalizing properties [33]
5We used ResNet50 pre-trained on ImageNet to extract R2048 vectors for all images. We then applied PCA over a set of
13,297 images crawled from Ugallery to reduce their dimensionality to R200. All this is precomputed beforehand.
6We used K-Means clustering to fit 100 clusters to the R200 item vectors obtained with ResNet50 + PCA.
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Fig. 8. Mobile interface with mandatory explanations. In the top of the image you can see the user profile.
The highlighted image image in the user profile is the explanation of the current recommendation.

behind this round-based re-ranking stage is that it generates a more diverse recommendation, more
evenly distributed among the visual clusters the user showed preference for.

6.5 The Explainable Recommender Interfaces
In this studywe studied the effect of different devices and the control of the user over the explanation
of recommendations. Since in this study we used a DNN based algorithm, all the explanations were
in a black-box fashion, showing the most similar image of the user’s profile. The similarity was
calculated using cosine similarity between the two image vectors.

6.6 User Study Procedure
To evaluate the effect of the explanation of an algorithm in different device interfaces we conducted a
user study on Amazon Mechanical Turk. We defined a user study with 2x2 between-subjects design.
The variables were device, with possible values Mobile and Desktop, and explanation obligatoriness,
with values Mandatory and Optional.

The full study procedure is shown in Figure 11. Participants accepted the study in one of the two
HITs on Mechanical Turk (https://www.mturk.com) and were redirected to a web application. If
a user accepted both HITs, we used just the data of the first HIT the user acomplished, we paid
both HITs to the user anyway. After accepting a consent form, they are redirected to the pre-study
survey, which collects demographic data (age, gender) and a subject’s previous knowledge of art
based on the test by Chatterjee et al. [10].
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Fig. 9. Mobile interface with optional explanations. The difference with the mandatory explanation interface
is the question mark button. If the user touches it, the explanation of the recommendation is displayed. If the
user touches the score mark button, the explanation is hid.

Following this, they had to perform a preference elicitation task. In this step, the users had to
“like” at least ten paintings, using a Pinterest-like interface. Next, they were randomly assigned
to one Explanation condition. In each condition, they again provided feedback (giving a "like" or
"dislike") to top ten recommendations of images by employing our Youtube-like algorithm. Finally,
the participants were asked next to answer a post-algorithm survey, whose questions are shown in
Table 4. Similar to study 1, these questions are adapted from dimensions presented in the ResQue
framework [51] and from previous user studies on recommendation systems [34, 49]. Once the
participants finished answering the post study survey, they were redirected to the final view, where
they received a survey code for later payment in Amazon Mechanical Turk.

7 RESULTS STUDY 2
The study entailed a total of 202 users out of which 177 were able to answer our validation questions
successfully and hence were included in the results. We used the same questions and conditions of
the study 1 to validate our users. Filtering out users not responding properly to these questions
allowed us to include 89 users for the Desktop interface, where 45 users got Optional Explanations
and 44 got Mandatory Explanations. For the Mobile interface we got 88 users, 44 in each explanation
condition. In total, participants were paid an amount of $2.00 USD per study, which took them
around 10 minutes to complete. We increased the payment in this second study compared to study
1. The reason is that in study 1 we just considered the reference of previous studies to calculate our
budget [42, 54], while in this second study we considered AMT guidelines about wages as well.
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Fig. 10. Preference Elicitation interface, mobile device

Fig. 11. Study procedure. After the pre-study survey and the preference elicitation, the users were randomly
assigned to an explanation condition.
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Table 4. Post study survey questions. The last three questiosn correspond to NASA TLX. We also asked the
open question If explanations did not make sense to you, why?. We also asked about any comments they had
regarding the study.

Representative name Question
Understand I understood why the art images were recommended to

me.
Relevance The art images recommended matched my interests.
Diversity The art images recommended were diverse.
Interface satisfaction Overall, I am satisfied with the recommender interface.
Use again I would use this recommender system again for finding

art images in the future.
Recommend I would suggest to my colleagues this recommender sys-

tem when they want to find art images in the future.
Trust I trusted the recommendations made.
Use explanations I used the explanations to decide about the recommenda-

tions.
Explainable The explanations over the items recommended made

sense to me.
Mental demand How mentally demanding was the task?
Rush How hurried or rushed was the pace of the task?
Insecure How insecure, discouraged, irritated, stressed, and an-

noyed were you?

Our subjects ranged from 18 to over 60 years old. Thirty-seven percent were between 25 to 32
years old, and 28% between 32 to 40 years old. Females made up 48%. Those just out of high school
came in at 16.9%, while 31% has completed some college, and 51.4% had a bachelor’s, master’s or
Ph.D. degree. Only 2.2% reported some visual impairment. With respect to their understanding of
art, 36% had zero experience, 46% had attended 1 or 2 lessons, and 18% reported to have attended
3 or more at high school level or above. Only 31% of our subjects reported that they had almost
never visited a museum or an art gallery; 36% do this once a year; and 33% do this once every 1 to 6
months.

8 AMODEL OF THE UXWITH AN ART RECOMMENDERWITH DIFFERENT DEVICES
As in the first study we created a full model connecting the variables measures in the study based
on Structural Equation Models (SEM). We grouped the variables in the same groups as we did in
the first study: (a) Personal Characteristics, (b) Objective System Aspects, (c) Subjective System
Aspects, (d) Interactions and (e) User Experience.

Prior to this analysis, we conducted a Confirmatory Factor Analysis (CFA) to reduce the number
of variables and group them in more understandable constructs to be included in the SEM.

8.1 Confirmatory Factor Analysis
We conducted a CFA and examined the validity and reliability scores of the constructs measured
in our study. The results are summarized in Table 5. We constructed 3 factors: Haste, Domain
expertise and Satisfaction. The items used share at least 50.3% of their variance with their designated
construct. The AVEs were all higher than the recommended value of 0.50, indicating adequate
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convergent validity. To ensure discriminant validity, we ascertained that the square root of the AVE
for each construct was higher than the correlations of the construct with other constructs.

In this study we attempted to create the construct Effort in the same fashion as study 1. However
the question How mentally demanding was the task? from the NASA TLX survey did not load
significantly well in the new confirmatory factor analysis (CFA). For this reason we decided to
change the name of the construct to Haste, in such a way that it reflected the meaning of the
remaining loading items.

Table 5. Results of the confirmatory factor analysis (CFA), indicating three constructs: Haste, Satisfaction and
Domain expertise. Questions in gray are the ones that were removed from the factor.

Construct Item Loading

Haste How mentally demanding was the task?
α = 0.811
AVE = 0.703

How insecure, discouraged, irritated, stressed, and an-
noyed were you?

0.730

How hurried or rushed was the pace of the task? 0.935
Satisfaction
α = 0.904

I would use this recommender system again for finding
art images in the future.

0.920

AVE = 0.773 Overall, I am satisfied with the recommender interface. 0.750
The art images recommended matched my interests.
I would suggest my colleagues to use this recommender
system when they want to find art imagesin the future.

0.957

Domain
expertise
α = 0.619
AVE = 0.859

In case you have taken art classes like: Studio Art Class,
Art History Classes, Art Theory or Aesthetics Classes.
How many times have you taken any of these classes at
the high school level or above?

0.709

In an average week how many hours do you spend mak-
ing visual art?

0.825

In the average week, how many hours do you spend look-
ing at visual art or reading a publication that is related to
visual art?

0.905

On average, you visit art museums or art galleries about
once every: 2 months, 6 months, a year or almost never.

0.689

In case you have taken art classes like: Studio Art Class,
Art History Classes, Art Theory or Aesthetics Classes.
How many times have you taken of any of these classes
at the high school level or above?

0.709

8.2 Structural Equation Model
We subjected the 3 factors we found in the CFA, all the items that could explain andmediate relations
and the experimental conditions to structural equation modeling, which simultaneously fits the
factor measurement model and the structural relations between factors and other variables. The
model has a mediocre fit 7 fit: χ 2 (120) = 240.817, p = .000; RMSEA = 0.076, 90%CI : [0.062, 0.089],
CFI = 0.974, TLI = 0.968. We did not find any significant interaction effects between the the
experimental manipulation.
7A model should not have a non-significant χ 2 (p > .05), but this statistic is often regarded as too sensitive. Hu and Bentler
[30] propose cut-off values for other fit indices to be: CFI > .96, TLI > .95, and RMSEA < .05, with the upper bound of its 90%
CI below 0.10.
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Fig. 12. The structural equation model for the data of the experiment using Knijnenburg’s evaluation frame-
work for recommender systems. Significance levels: ∗ ∗ ∗p < .001, ∗ ∗ p < .01, ∗p < 0.05. R2 is the proportion
of variance explained by the model. Numbers on the arrows (and their thickness) represent the β coefficients
(and standard error) of the effect. Factors are scaled to have an SD of 1.

Effect of explanation obligatoriness: This effect was found not significant. Notice that in all
conditions there were explanations available, but in one case the explanations were always displayed
(mandatory), whereas in the other case the users could choose whether to display the explanations
or rather hide them (optional). Then, we expected, as presented in hypothesis 5, that users who
could control whether to see or not the explanations would have a better user experience due to
the positive effect of user controllability observed in previous studies on recommender systems
[7, 49, 63]. It was not the case.

Effects of device: The device directly affects the elicitation time, but indirectly affects the ratings
through elicitation time. The effect is negative, which means that when using a mobile interface,
users spent less time picking images they liked. This may happen because on a desktop laptop
users can see almost all the shown images at once, which allows them to compare.

Effect of Pinterest Elicitation Time: the elicitation time negatively affects the ratings, which means
that when users do the experiment on desktop they tend to spent more time picking images they
like, which then translates into worse ratings and also in less stress during the task.

Effect of haste: haste has a negative effect on understandability and trust, just like in the previous
experiment. It also has a negative effect on diversity perception, the more hurried the user feels,
they tend to feel less diversity in the items recommended.
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Effects on satisfaction: just like in the previous experiment, trust has a very large effect on
satisfaction. In this experiment the effect is 10 times larger than the effect of understandability. The
perception of image diversity positively affects satisfaction: the more diversity users perceive, the
more satisfied they feel with the interface. The only Objective System Aspect (OSA) that affects
this factor is the device, when using desktop the haste would be lower and then the perception of
diversity would be higher.

9 DISCUSSION STUDY 2
This study was conducted with the aim of answering hypotheses 4 and 5. First, hypothesis 4 stated
that there would be differences in user experience with the recommender systems between two
devices: desktop and mobile. As we can see in the figure 12, the SEM of the study 2, the device
variable had a significant effect. It affected directly the time in the preference elicitation phase,
which is explained by the space and layout of the interfaces due to screen size. If the device was a
mobile, users tend to spend less time selecting their preferences. We explain this considering that
the larger screen of the desktop device promotes more comparisons among items shown in the
screen, increasing exploratory behavior. In the mobile device, users focused on deciding whether a
single image shown in the viewport was to be liked or not. Moreover, the SEM analysis shows an
indirect relation between device and average rating: desktop device increases time spent by users,
and the larger the time spent, the lower the ratings. This might be explained by the fact that in the
mobile interface users evaluate each recommended image one at a time, while in the larger desktop
interface users rate the paintings by watching also the context of the whole list. This result gives
some hints about a variable not explicitly observed that can have a strong influence: evaluation of
a list of recommendations versus evaluation of isolated recommended items.
With respect to hypothesis 5, we expected that increased user control upon showing or hiding

the explanations would have a positive effect on subjects’ experience. This was not the case, since
we found no significant effects of providing explanation obligatoriness or optionality upon any
variable, such as the perception of understandability. We rather found other aspects that had an
effect. Interestingly, the perception of understandability had a positive significant effect on both
satisfaction and ratings. Nevertheless, this perception of understandability was influenced by users’
trust as a situational characteristic as well by users’ feeling of haste during the study.

10 DISCUSSION & LIMITATIONS
10.1 General Discussion
(1) Apart from supporting with an online study where the visual recommender based on deep

learning features performs better than the recommender based on explicitly-engineering
features, one of the main take-aways of study 1 is that recommender interfaces with higher
transparency are not always the best option compared to interfaces with simplified explana-
tions or interpretability. In addition, the user satisfaction is positively affected by the users’
trust on the system, as well by the perception of understability, time and experience with the
art domain. These results are in line with other recommender systems studies [7, 49, 63]. In
general, we suggest that developers and researchers to make sure that the algorithms used
are accurate enough before attempting any design at the level of the interface for studying
different types of explanations. Extending the findings by Cramer et al. [13], the users need
to perceive the algorithm as competent in order to gain their trust. Design of the interface
without making sure the algorithms are accurate enough will most likely fail.

(2) In the study 2 we only used the algorithm based on deep learning visual features with the
explanations based on similar items, as the one by Cai et al [8]. It was interesting that in
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the second study we again observed a strong effect of user trust as well as perception of
understandability on the user satisfaction with the recommender system. The type of device
had an incidence at the time of interacting with the interface, mostly based on the amount of
item for which to compare with at the moment of preference elicitation. In a larger device
users could compare many items, while in the mobile they could only see and judge one item
at a time.

(3) Study 2 provides three important insights to the study of explainability on interactive image
recommendation systems: (I) The first insight we highlight is the importance of the device
(and its corresponding screen size) when designing the preference elicitation stage and not
only the recommendation stage. When designing an interface for recommending images, the
device and its corresponding screen size (small screen on mobile phone versus larger screen
on a desktop device) might have a stronger impact on the preference elicitation stage that
when users explore the actual recommendations. Preference elicitation plays an important
role in collecting data for learning the user model, and thus we suggest to jointly study
device, preference elicitation interface and recommendation interface in further studies.
Focusing only on the interface that shows the recommended items might not give a full
picture of the UX with the recommender. (II) Although in study 1 we found that providing
explanations, as well as the type of explanation, had a significant effect on user experience
compared to no explanations at all, in study 2 we found that providing users the chance to
control whether they could see or hide the explanations had no effect compared to see them
obligatorily. We thought that the limitations of the small mobile screen would produce an
interaction between device and explanation obligatoriness, but it was not the case. Thus,
providing explanations and different ways to show them seems to be a good avenue for future
work, whereas providing users control over showing them of hiding them seems to have no
much impact for user experience with the image recommender, even on screens with limited
size like mobile devices. (III) Finally, our results provide additional evidence of important
effects found on previous interactive recommendation studies [35, 49, 50], but in this case
for recommendation of visual art. We report confirming evidence of the positive effect of
users’ inherent trust, as well as perceptions of understandability and diversity upon final
satisfaction with the recommendation system.

(4) If we compare our results with other studies on explainable AI, either in terms of recommender
systems [47] or in a traditional classifier [67], we can say that our results indicate that users
evaluate positively explanations of predictions, but more transparency is not always the best
option, even with a well-known accurate recommendation algorithm.

10.2 Limitations
One limitation in this work is that we built our recommendation models and hypotheses based
on the off-line analysis of transactions from an online store, and in this article we show results of
an online study where the signal of user preference are likes rather than sales. In a future study,
we will ask users whether they would buy the paintings recommended so we can more precisely
understand these two different preference signals.

Another important limitation in our experiments is that we conducted them in a single session,
rather than following users’ interest over a longer period of time. Holliday et al [29] showed that
users’ trust upon the system varies over time, so in the future we should conduct the experiments
over a longer period of time and not just within a single session.
Another limitation to consider is that there were some changes between study 1 and study 2

that can hinder their comparison. The first one is that we changed the wage from 0.4 US dollars
per minute in study 1, to 2 dollars per minute in study 2. We did this in order to adjust to ethical
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wage guidelines in AMT compared to what previous papers had reported [42, 54]. Another aspect
making comparisons difficult among studies one and two is the number of subjects in each study.
In the second study we were more careful in designing the full validation pipeline (not only the
traditional validation questions) and for these reasons, in the second study we had 177 valid users
(from 200 participating) versus only 121 valid users in study 1 (also with 200 subjects participating).

In the design of study 1, since we presented many conditions, combining different kinds of
interfaces and algorithms, there are effects that cannot be explained just by one variable. One
limitation is that there is a significant difference in the results between interface 3 and interface 2,
but it cannot be attributed just to the change of interface and explanation. We also need to consider
that in interface 2, recommendations were based on top 3 similar images, and in interface 3 the
recommendations were based on top 1 similar image. This could affect the user experience in a
way that cannot be ignored

We used visual features that capture the attractiveness of a picture to recommend art. There are
more features that capture more aspects of art images, like the emotions and content. In [40] they
present features inspired by psychology and art theory to make an affective classification of images.
One limitation is that it is expensive to test several algorithms and features in a user study. As the
amount of conditions increases, the amount of participants needed increases too. We decided to
use the AVF over other sets of features because they were already tested in art recommendation
task before [45] and performed well. We wanted to test more features inspired by emotion like the
aforementioned, but the amount of participants needed to made the study is a limitation, and the
performance of these features in an art recommendation task was not tested.

11 CONCLUSIONS & FUTUREWORK
This paper describes the effects of explaining recommendation of images by conducting two
user studies. In the first study we employed three different recommender interfaces, as well as
interactions with two different visual content-based recommendation algorithms: one with high
predictive accuracy, but with unexplainable features (DNN), and another with lower accuracy, but
with higher potential for explainable features (AVF). In the second study we studied the effects of
the type of device (mobile or desktop), combined with the option of choosing whether to receive
explanations in the recommendations. In the first study we answered research questions 1-3 and in
the second we answered the last two.

The first result, which addresses Hypothesis 1, shows that explaining the images recommended
has a positive effect on users. Moreover, the explanation based on top 3 similar images presents
the best results, but we need to consider that the alternative method, explanations based on visual
features, was only used with one type of visual feature, the AVF. This result should be further
studied in other image datasets, and it opens a new branch of research in terms of new interfaces
to explain the features learned by a Convolutional DNN of images.

Regarding Hypothesis 2, we see that the algorithm plays an important role in conjunction with
the interface. DNN is perceived better than AVF in most dimensions, showing that further research
should focus on the interaction between algorithm and explainable interfaces. We will expand this
work to other datasets, beyond artistic images, to generalize our results.

With respect to Hypothesis 3, we have provided a holistic model to each user study, based on the
framework by Knijnenburg et al. [36], which explains the relations among different independent
variables (interface, algorithm, device, art domain expertise) and several metrics to measure the
user experience with an explainable recommender system of artistic images.
With the second study we were able to address the last two Hypotheses. We could not reject

our Hypothesis 4, since mobile devices tend to decrease the stress of the users, which increases
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satisfaction. It is interesting to notice that the device has an effect that spreads to the whole model
of user experience.

Finally for Hypothesis 5, we can see in figure 12, that the explanation obligatoriness has a direct
but not significant effect on the ratings and only upon this variable. Although the effect is not
significant it could not be ignored because the model has a relatively good fit and the effect is high
(-0.310). This path states that when the users receive explanations in a mandatory fashion, they
gave lower ratings than the people who have the option to decide whether to receive explanations
or not. In this case, the explanations did not affect the whole user experience, just the evaluation of
the images. We therefore realized in the first user study that the form of explanation has a major
effect, but the explanation obligatoriness has, comparatively, no major effect.
In the future, we would like to use more advance techniques to explain on automatic decision

models like LIME [53], but adapted to personalized recommender systems. We also would like to
combine these types of explanation techniques with recent models of neural style transfer [19, 48]
and test them using this user-centric recommender evaluation framework.
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13 ADDITIONAL MATERIAL
13.1 Study 1 general results

Table 6. Results of users’ perception over several evaluation dimensions, defined in Section 3.6. Scale 1-100
(higher is better), except for Average rating (scale 1-5). DNN: Deep Neural Network, and AVF: Attractiveness
visual features.

Explainable Relevance Diverse Interface
Satisfaction Use Again Trust Average Rating

Condition DNN AVF DNN AVF DNN AVF DNN AVF DNN AVF DNN AVF DNN AVF
Interface 1
(No Explanations) 66.2 51.4 69.0 53.6 46.1 69.4 69.9 62.1 65.8 59.7 69.3 63.7 3.55 3.23

Interface 2
(DNN & AVF: Top-3 similar images) 83.5* 74.0 80.0* 61.7 58.8 69.9* 76.6* 61.7 76.1* 65.9 75.9* 62.7 3.67* 3.00

Interface 3
(DNN: Top-3 similar, AVF: chart) 84.2* 70.4 82.3* 56.2 65.3 71.2 69.9* 63.3 78.2* 58.7 77.7* 55.4 3.90* 2.99

Table 7. NASA TLX Results.

Mental Hurry Insecure
Condition DNN AVF DNN AVF DNN AVF
Interface 1
(No Explanations) 19.90 23.24 10.78 13.41 12.22 12.88

Interface 2
(DNN & AVF: Top3 images) 20.05 18.46 11.54 12.08 7.62 6.59

Interface 3
(DNN: Top3 imag., AVF: chart) 23.41 26.37 14.29 15.73 13.32 16.37↑2
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Table 8. Results of users’ perception over several evaluation dimensions, defined in Table 9 . Scale 1-100
(higher is better) Mob: Mobile Interface, and Desk: Desktop Interface.

Understood Relevance Diversity Interface
Satisfaction

Use
Again Suggest Trust Use

Explanations Explainable

Condition Mob Desk Mob Desk Mob Desk Mob Desk Mob Desk Mob Desk Mob Desk Mob Desk Mob Desk
Optional
Explanation 79.41 82.18 79.02 77.20 64.64 69.13 78.95 81.04 76.84 81.56 76.09 80.89 80.27 80.13 47.05 48.47 71.23 72.04

Mandatory
Explanation 82.70 84.48 75.14 71.50 78.23 71.18 81.07 82.20 76.57 81.36 73.55 76.77 77.34 78.05 54.75 52.64 83.73 80.77

13.2 Study 2 general results

Table 9. NASA TLX results, Prec@10 and Time tracked in elicitation and recommendation stage.

Prec@10 Elicitation
Time

Recommendation
Time Insecurity Mental

Demand Hurry

Condition Mob Desk Mob Desk Mob Desk Mob Desk Mob Desk Mob Desk
Optional
Explanation 0.72 0.63 110.69 197.69 52.09 40.99 9.18 4.64 21.91 20.47 15.02 8.02

Mandatory
Explanation 0.64 0.60 116.22 174.06 66.48 43.29 8.36 6.23 22.50 21.82 12.61 11.57
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